939 research outputs found

    Synthesis, Sintering, and Electrical Properties of BaCe0.9−xZrxY0.1O3−δ

    Get PDF
    BaCe0.9−xZrxY0.1O3−δ powders were synthesized by a solid-state reaction. Different contents of cerium and zirconium were studied. Pellets were sintered using either conventional sintering in air at 1700◦C or the Spark Plasma Sintering (SPS) technique. The density of the samples sintered by SPS is much higher than by conventional sintering. Higher values of ionic conductivity were obtained for the SPS sample

    Інновації в сучасній освіті

    Get PDF
    22 ref. doi: 10.1093/nar/gng158International audienc

    Identification by mutational analysis of four critical residues in the molybdenum cofactor domain of eukaryotic nitrate reductase

    Get PDF
    AbstractThe nucleotide sequence of the nitrate reductase (NR) molybdenum cofactor (MoCo) domain was determined in four Nicotiana plumbaginifolia mutants affected in the NR apoenzyme gene. In each case, missense mutations were found in the MoCo domain which affected amino acids that were conserved not only among eukaryotic NRs but also in animal sulfite oxidase sequences. Moreover an abnormal NR molecular mass was observed in three mutants, suggesting that the integrity of the MoCo domain is essential for a proper assembly of holo-NR. These data allowed to pinpoint critical residues in the NR MoCo domain necessary for the enzyme activity but also important for its quaternary structure

    Elk-1 a Transcription Factor with Multiple Facets in the Brain

    Get PDF
    The ternary complex factor (TCF) Elk-1 is a transcription factor that regulates immediate early gene (IEG) expression via the serum response element (SRE) DNA consensus site. Elk-1 is associated with a dimer of serum response factor (SRF) at the SRE site, and its phosphorylation occurs at specific residues in response to mitogen-activated protein kinases (MAPKs), including c-Jun-N terminal kinase (JNK), p38/MAPK, and extracellular-signal regulated kinase (ERK). This phosphorylation event is critical for triggering SRE-dependent transcription. Although MAPKs are fundamental actors for the instatement and maintenance of memory, and much investigation of their downstream signaling partners have been conducted, no data yet clearly implicate Elk-1 in these processes. This is partly due to the complexity of Elk-1 sub-cellular localization, and hence functions, within neurons. Elk-1 is present in its resting state in the cytoplasm, where it colocalizes with mitochondrial proteins or microtubules. In this particular sub-cellular compartment, overexpression of Elk-1 is toxic for neuronal cells. When phosphorylated by the MAPK/ERK, Elk-1 translocates to the nucleus where it is implicated in regulating chromatin remodeling, SRE-dependent transcription, and neuronal differentiation. Another post-translational modification is the conjugation to SUMO (Small Ubiquitin-like MOdifier), which relocalizes Elk-1 in the cytoplasm. Thus, Elk-1 plays a dual role in neuronal functions: pro-apoptotic within the cytoplasm, and pro-differentiation within the nucleus. To address the role of Elk-1 in the brain, one must be aware of its multiple facets, and design molecular tools that will shut down Elk-1 expression, trafficking, or activation, in specific neuronal compartments. We summarize in this review the known molecular functions of Elk-1, its regulation in neuronal cells, and present evidence of its possible implication in model systems of synaptic plasticity, learning, but also in neurodegenerative diseases

    Structural pattern matching of nonribosomal peptides

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nonribosomal peptides (NRPs), bioactive secondary metabolites produced by many microorganisms, show a broad range of important biological activities (e.g. antibiotics, immunosuppressants, antitumor agents). NRPs are mainly composed of amino acids but their primary structure is not always linear and can contain cycles or branchings. Furthermore, there are several hundred different monomers that can be incorporated into NRPs. The N<smcaps>ORINE</smcaps> database, the first resource entirely dedicated to NRPs, currently stores more than 700 NRPs annotated with their monomeric peptide structure encoded by undirected labeled graphs. This opens a way to a systematic analysis of structural patterns occurring in NRPs. Such studies can investigate the functional role of some monomeric chains, or analyse NRPs that have been computationally predicted from the synthetase protein sequence. A basic operation in such analyses is the search for a given structural pattern in the database.</p> <p>Results</p> <p>We developed an efficient method that allows for a quick search for a structural pattern in the N<smcaps>ORINE</smcaps> database. The method identifies all peptides containing a pattern substructure of a given size. This amounts to solving a variant of the maximum common subgraph problem on pattern and peptide graphs, which is done by computing cliques in an appropriate compatibility graph.</p> <p>Conclusion</p> <p>The method has been incorporated into the N<smcaps>ORINE</smcaps> database, available at <url>http://bioinfo.lifl.fr/norine</url>. Less than one second is needed to search for a pattern in the entire database.</p

    All-optical delay line using semiconductor cavity solitons

    Get PDF
    An all-optical delay line based on the lateral drift of cavity solitons in semiconductor microresonators is proposed and experimentally demonstrated. The functionalities of the device proposed as well as its performance is analyzed and compared with recent alternative methods based on the decrease of group velocity in the vicinity of resonances. We show that the current limitations can be overcome using broader devices with tailored material responses

    All-optical delay line using semiconductor cavity solitons (vol 92, 011101, 2008)

    Get PDF
    Correction of Pedaci, F. and Barland, S. and Caboche, E. and Firth, W.J. and Oppo, G.L. and Tredicce, J.R. and Ackemann, T. and Scroggie, A.J. (2008) All-optical delay line using semiconductor cavity solitons. Applied Physics Letters, 92 (1). ISSN 0003-695

    Cavity-soliton motion in the presence of device defects

    Get PDF
    Cavity solitons (CSs) are localized structures appearing as single intensity peaks in the homogeneous background of the field emitted by a nonlinear (micro) resonator driven by a coherent field (holding beam). By introducing a phase gradient in the holding beam, it is possible to induce CS drift. This motion is strongly influenced by the presence of defects in the device structure. We analyze numerically two situations that appeared in the experiments. In the first one, a structure is self-generated on the defect and a regular sequence of moving CS originates from it. We investigate the properties of this \u201ctap\u201d of CS as a function of the defect characteristics and of the parameters values. The second situation corresponds to the interaction between a moving CS and a defect, which plays a fundamental role in CS applications such as the delay line or the shift register
    corecore