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Cavity solitons sCSsd are localized structures appearing as single intensity peaks in the homogeneous
background of the field emitted by a nonlinear smicrod resonator driven by a coherent field sholding beamd. By
introducing a phase gradient in the holding beam, it is possible to induce CS drift. This motion is strongly

influenced by the presence of defects in the device structure. We analyze numerically two situations that

appeared in the experiments. In the first one, a structure is self-generated on the defect and a regular sequence

of moving CS originates from it. We investigate the properties of this “tap” of CS as a function of the defect

characteristics and of the parameters values. The second situation corresponds to the interaction between a

moving CS and a defect, which plays a fundamental role in CS applications such as the delay line or the shift

register.

DOI: 10.1103/PhysRevA.80.053814 PACS numberssd: 42.65.Tg, 42.65.Sf, 42.79.Ta

I. INTRODUCTION

Spatial and temporal localization of light is one of the
hottest topics in non linear optics f1–3g. Solitons sboth spa-
tial and temporald have been largely investigated in the
framework of propagative systems. In the last decade, a
novel approach to this problem was developed borrowing
concepts from pattern formation in dissipative systems f4,5g.
In particular, localized structures, i.e., a cellular part of an

extended pattern, appeared as a new promising solution to

reach light localization f6,7g. Beyond the transverse localiza-
tion, localized structures own properties that make them very

attractive for applications: they can be independently

switched on and off by a local optical perturbation f8g and
they can be moved and positioned by applying a parameter

gradient into the system f9g. Single-peak localized structures
have been also called cavity solitons sCSsd f5g. In semicon-
ductor devices, they have been predicted f10,11g and experi-
mentally observed f12g in a broad-area smore than 150 mm

diameterd vertical cavity surface emitting laser sVCSELd
driven by injection of a coherent and homogeneous field

sholding beamd and biased above transparency but below
threshold samplifying regimed. Typical transverse size of CS
is around 10 mm and they appear in a broad region of the

parameter space upon proper tuning of VCSEL bias, holding

beam amplitude and detuning between the cavity resonance

and the injected field frequency f13g. Individual addressing
has been shown experimentally by injecting into the cavity a

writing beam. This is a narrow beam, having approximately

of the same size of CS and coherent with the holding beam

f14g. CS motion has been demonstrated upon introduction of
a phase gradient in the holding beam, paving the way to

possible application of CS to delay line and shift-register

memory f15g. CS array reconfiguration has been shown by
introducing a phase landscape in the holding beam profile

through a spatial light modulator. Independently of their ini-

tial position, CS migrates toward the phase maxima and their

final arrangement reproduces the phase landscape inserted

f16g. Despite these successful implementations of CS prop-
erties, we are still far from a full implementation of their
potential in nonprototype devices. A difficulty comes from
the engineering of broad-area slarger than 150 mm diameterd
VCSELs. State-of-the-art fabrication process does not fully
prevent from formation of small size “defects” sdiameter
ranging from few mm up to few tens of mmd in the transverse
plane of the laser. These are in general local spatial varia-
tions of the semiconductor resonator characteristics sthick-
ness, electrical and optical properties, optical gaind f17,18g.
Local defects affect CS addressing inducing spontaneous for-
mation of CS at undesired positions and they prevent from
an arbitrary addressing of CS through the whole transverse
section of the device f13g. Local defects also affect CS po-
sitioning since they may trap, annihilate, or deviate the mov-
ing CS. This fact strongly limits the possibility of controlled
movement of CS on long distance and the possibility of ar-
bitrary reconfiguration of CS positions f15,16g. The influence
of defects on the CS trajectory was used in order to map the
defect positions in a VCSEL device. The results obtained
have shown an extremely rugged surface for the devices
available f19g. Finally, in a recent paper, it was shown that
the interplay between these defects and a phase gradient in

the holding beam may lead to a regular sequence of CSs

originating from the defect and moving in the gradient direc-

tion f20g, a sort of CS “tap.”
In this paper, we analyze numerically in details how de-

fect characteristics influence the CS spatiotemporal dynam-

ics in presence of a phase gradient in the holding beam. In

particular, we will show that, depending on defect depth and

steepness, different dynamical behaviors can be obtained. In

the next section, we will describe how defects are introduced

in the semiconductor cavity model and how a holding beam

phase gradient affects the CS speed and their stability. In

Sec. III, we will report on different spatiotemporal dynamics

of CS as a function of defects characteristics and phase gra-

dient strength in the CS tap. In Sec. IV, we will analyze a

different situation, where a traveling CS meets a defect
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placed on its trajectory. In Sec. V, we will discuss the relation

between the dynamical behaviors described above and CS

applications. Finally, in Sec. VI, we will draw our conclu-

sions.

II. THEORETICAL MODEL

Our model describes a broad-area VCSEL, biased below

threshold, in the paraxial and mean-field limit approxima-

tions and it reads f11g

]E

]t
= − fs1 + iudE − 2Cs1 − iadsN − 1dE + − EI − i¹

'

2 Eg ,

s1d

]N

]t
= − gfN + sN − 1duEu2 − I − d¹

'

2 Ng , s2d

where E is the normalized slowly varying envelope of the

electric field and N is the carrier density, g is the ratio be-

tween the nonradiative recombination rate gi and the cavity

decay rate k sg=gi /kd, and u is the cavity detuning param-

eter u= svc−v0d /k, with v0 being the injected field fre-

quency and vc the cavity resonance frequency. EI is the nor-

malized input field, I is the normalized injected current, 2C

is the bistability parameter, a is the linewidth enhancement

factor, ¹
'

2 is the transverse Laplacian, and d is the carrier

diffusion coefficient.

Time is scaled to the photon lifetime k−1 and the spatial

variables x and y are scaled to the square root of the diffrac-

tion parameter a; for this kind of cavities, we can assume a

time unit of about 10 ps and a space unit of about 4.5 mm

f11g. In the numerical simulations performed in this paper,
the following parameters have been fixed: C=0.45, a=5, g

=0.01, and d=0.052. Our control parameters are then u, EI,

and I.

The S-shaped input-output curve for the homogeneous

stationary solution of Eqs. s1d and s2d, showing the intracav-
ity field amplitude as a function of u, is shown in Fig. 1 for

a homogeneous device. The broken part of the curve shows

the unstable region where, due to a modulational instability,

the system generates a spatially modulated solution. CSs co-

exist with the stable low-intensity homogeneous solution for

−2.06#u#−1.905 sthat is, between the two dashed line
s p and qd, while for u,−2.06, only patterns exist and for

u.−1.905, only the lower homogeneous solution is stable.

A. Introduction of device defects in the model

In this paper, we focus our analysis on small-scale defects

that appear in the device transverse section. We call defect

any local variation of a structural parameter of the device on

a scale ranging from a few mm to a few tens of mm, i.e.,

having a size comparable to the CS size. These inhomogene-

ities are typically generated during the device growth or

post-processing stages and they have been experimentally

analyzed f17,18g. Several structural parameters can be in-
volved: the resonator length sBragg reflectors layers thick-
ness variations and interface roughnessd, the optical gain,
and the refractive index stransverse inhomogeneity of doping
leveld. These defects appear to be unavoidable at the state-
of-the-art of the laser manufacturing and they affect the

translational invariance of the VCSEL device usually as-

sumed for the generation of CS. As a consequence, some

spots in the transverse section of the device may display

different parameter values with respect the rest of the device;

in particular, the parameter values may be incompatible with

CS existence, even if the largest part of the device is set for

CS suitable parameter values. In these conditions, CS ad-

dressing becomes impossible at certain points of the device.

Moreover, it is well known that any spatial variation of

the parameters induces a drift of the CS f9,21g. Hence, small-
scale defects may behave as attractive or repulsive regions

for CS thus imposing strong constraints on their positions. In

recent papers, the effects of small-scale inhomogeneities on

CS movement have been analyzed f19,22g. In f19g, CSs have
been dragged by applying moving fringes in the holding

beam acting as an external force on CS. The direction of this

force has been varied and the resulting CS trajectories have

been analyzed. Because of the attractive or repulsive effects

of defects, the CS trajectories deviate from the directions

imposed by the external force. Accordingly, it has been pos-

sible to construct a map of defects for the specific device

used. The same experiment has been performed numerically

in order to verify the role of defect versus the dragging force.

The broad-area injected VCSEL is described using the rate

equations s1d and s2d. Device defects in the transverse plane
of the device are simulated by introducing a local spatial

dependence in the value of the cavity detuning parameter. In

physical terms, this means to identify the defects as local

variations of the resonator thickness sdue to Bragg reflectors
roughnessd. This approach has been successfully used in or-
der to reproduce numerically the device defect map observed

experimentally, thus validating the description of defects in

terms of the parameter u. The same assumption has been

made in Ref. f20g, leading to the numerical confirmation of
the periodic regime observed in the experiment sthe CS tapd.
In this paper, we build on this result in order to analyze in

details the role of defect characteristics on CS dynamics.
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FIG. 1. sColor onlined Stationary solutions for a homogeneous
device as a function of the cavity detuning parameter u. Solid

sdashedd line represents the stable sunstabled homogeneous steady
state. Circles strianglesd represent the maximum intensity of stable
CSs spatternsd. Other parameters are I=2.0024 and EI=0.792. The

region between the two lines p and q is the stability region of CSs

corresponding to −2.06#u#−1.905.
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Then, a defect is described by introducing a super-Gaussian

spatial profile of u,

usx,yd = u0 − ud expF− S sx − x0d
2 + sy − y0d

2

sd
2 DbG , s3d

where u0 is chosen in the range where CSs are stable

sp,u0,qd and b=3 unless differently stated. According to

the experimental observations f17,18g, the defect size is as-
sumed comparable to the CS size. Unless differently stated,

we assume sd=11.25 mm which means a defect diameter at

half depth sheightd of 21.2 mm.

If ud is positive, it corresponds to the defect depth and we

define the defect as attractive. On the contrary, for a repul-

sive defect, ud is negative and it corresponds to the defect

height. In Fig. 2, we plot the attractive defect profile for

different values of the defect depth ud. It is evident that a

change of the depth implies also a change of the steepness of

the defect walls, i.e., of the gradient of u.

We performed numerical simulations of Eqs. s1d and s2d.
We used a split-step method with fast Fourier transform

sFFTd to integrate the transverse Laplacian terms on a spatial
grid of 1283128 points with periodic boundary conditions.

The finite size of the device has been simulated by assuming

an injected current with circular profile sdiameter of about
200 mmd.
In the case of an attractive defect, we have observed that,

if the defect depth is sufficiently large, a high-intensity struc-

ture spontaneously forms upon the defect. This happens be-

cause only a “pattern” solution is stable there. The same

bifurcation occurs in the homogeneous device shown in Fig.

1 when u,p and patterns develop throughout the entire de-

vice section. Actually, the single-peaked structure generated

on the defect can be intuitively viewed as a “portion” of a

pattern, the characteristics of which are strongly dependent

on the defect size and shape. In particular, it is important to

point out that the bifurcation value of u leading to the struc-

ture formation in the defect sucd is slightly different smore
negatived from the bifurcation value p calculated in the ho-

mogeneous case and it depends on the defect characteristics.

For the defect size considered in Fig. 2, the single-peaked

structure forms spontaneously for u0−ud,uc=−2.114 ssee
Fig. 8d. If sd is increased, uc converges to p, but over a

critical defect size an extended pattern forms as expected.

The structure generated on the attractive defect is also

pinned by the defect because of the force engendered by the

gradient of u at the defect walls. The pinning force generated

by the defect will be analyzed in Sec. IV.

In the case of a repulsive defect, if the defect height is

sufficiently large, no CS can live or be addressed upon the

defect. This happens because only the low-intensity “homo-

geneous” solution is stable there. The same bifurcation oc-

curs in the homogeneous device shown in Fig. 1 when u

.q and homogeneous solution is the only possible solution

throughout the entire device section. As a matter of fact, if a

writing beam is used targeting the defect, the system locally

relaxes to the low-intensity solution as soon as the perturba-

tion is removed. At the same time, the gradient of usx ,yd at
the defect walls generates a repulsive force for CS brought

close to the defect, as it will be analyzed in Sec. IV.

B. Introduction of the phase gradient in the holding beam

As already mentioned, CSs are known to couple to any

spatial variation of a system parameter, which represents a

perturbation of the translational symmetry: they will there-

fore drift transversely on any parameter gradient with a ve-

locity proportional to the gradient amplitude, at least in the

perturbative limit f21g. From the experimental point of view,
a gradient can be introduced in the holding beam phase by

piezoelectrically tilting the mirror injecting the holding beam

in the VCSEL cavity f15g. Moreover, the global phase of the
holding beam is not a critical parameter for the CS stability

and this simplifies the introduction of the gradient, which

should therefore preserve CS existence conditions. For all

these reasons, CS drift is preferably generated by introducing

a gradient in the holding beam phase and, in this paper, we

will limit the analysis to this situation. In the models s1d and
s2d, a linear gradient is introduced in the holding beam phase
by putting EI=EI0 expsiKW ·xWd. The effect of a phase gradient
in the holding beam on CS speed has been analyzed numeri-

cally in f15g. For the parameters we used, the CS speed v as

a function of K is plotted in Fig. 3. v depends linearly on K

on a large range, where the perturbative limit is still valid,
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FIG. 2. sColor onlined Spatial profile scut at y=y0d of the super-
Gaussian attractive defect described by Eq. s3d for different value of
ud. Other defect characteristics are b=3, u0=−2.0472, and sd

=11.25 mm. Horizontal lines are plotted for reference and they

indicate the critical values of u as described in the text.
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FIG. 3. CS drift speed vs phase gradient in the holding beam.

Other parameters are as in Fig. 1.
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and then it saturates. For higher values of K, the moving CS

solution is not stable anymore.

Since the global holding beam phase is not a critical pa-

rameter for the CS existence, it is surprising that, for large

values K, CS stability is affected. A strong clue to understand

this effect can be found in f9,23g. In these papers, the prob-
lem of drifting CS in an injected cavity is treated analytically

using a single equation for the electromagnetic field propa-

gating in an instantaneous two-level passive medium. In par-

ticular, it has been shown that the addition of a linear phase

gradient in the holding beam generates, after a suitable

change of variables, two extra terms in the field equation.

The first one transforms the time derivative of the field into a

convective derivative, thus indicating that traveling CSs are

solutions of the field equation. The second one effectively

modifies the value of the cavity detuning parameter u accord-

ing to the following relation:

uK = u + aK2, s4d

where a being the diffraction parameter. For large values of

K, this may eventually lead to a destabilization of traveling

CS solution, as it happens in our case in Fig. 3. In order to

check if this interpretation is correct, we numerically calcu-

lated the existence domain of CS in the parameter space

su ,Kd using Eqs. s1d and s2d. We have found that the limits
of the CS existence domain, called p and q for K=0, change

according to the law expressed by Eq. s4d as shown in Fig. 4.
We note that in our system, contrary to the case of the

single equation model of Ref. f9g, the change of variable F

=E exps−iKW ·xWd performed after introducing a phase gradient
does not allow to conclude that any solution of the system

without gradient will also exist, but move, in the presence of

a gradient. In fact, Eqs. s1d and s2d are not preserved upon
the addition of the phase gradient in the injected field, as

shown by the absence of the convective term in the equation

for the carriers. This absence could suggest that CS will

loose stability for sufficiently high drift speed due to slow

carrier dynamics. On the contrary, Fig. 4 clearly indicates

that the mechanism for the saturation of CS velocity and

their subsequent destabilization in presence of a phase gra-

dient in our system is, at least for the present parameter set,

due to the correction to u expressed by Eq. s4d, directly im-
plied by the presence of the phase gradient in the holding

beam.

III. DEFECTS AS SOURCES OF DRIFTING CS:

THE CS TAP

We consider a VCSEL device injected by a holding beam

for parameters set where CSs exist in the largest part of the

device section. We consider an attractive defect deep enough

to lead to the formation of a structure, as described in Sec.

II A. In these conditions, the application of a phase gradient

in the holding beam phase may result in the formation of a

periodic flow of drifting CSs originated in the defect. CS

drift occurs in the direction of the gradient, thus climbing the

slope of the phase. This spatiotemporal dynamics has been

experimentally observed and theoretically analyzed recently

f20g: if the force engendered by the phase gradient is strong
enough to overcome the pinning force of the defect, the

structure leaves the defect. Outside of the defect, both the CS

and the low-intensity homogeneous solution are stable. Here,

the structure becomes a CS and it keeps on traveling in the

direction of the gradient with a speed depending on K. In the

defect, once the structure has gone away, the system must

relax back to the high-intensity s“pattern”d state, which is the
unique stable solution. Therefore, the structure forms deter-

ministically in the defect as a result of the slocald evolution
of the system to the equilibrium. This structure is pushed

outside of the defect by the phase gradient and the process

starts again, originating a periodic flow of drifting CS.

Numerical simulations of the spatiotemporal evolution of

CS are represented by space-time diagrams in Fig. 5. In order

to describe the observed dynamics, we introduce two char-

acteristic times: the formation time st fd of the structure in the
defect after the preceding structure has gone and the detach-
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FIG. 4. sColor onlined CS existence domain as a function of u

and K in a homogeneous device. Circles correspond to the critical

values obtained by numerical integration of Eqs. s1d and s2d. Lines
correspond to the correction of u as a function of K according to Eq.

s4d applied to the values of p and q, delimiting the CS existence

domain when K=0. Other parameters are as in Fig. 1.
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FIG. 5. sColor onlined Spatiotemporal diagrams of the CS evo-
lution ftwo-dimensional s2Dd numerical simulation, cut along xg in
the cases of shallow defect sud=0.2, left paneld and deep defect
sud=0.5, right paneld. The defect is placed at Y=180 mm, while

in the rest of the sample the value of the detuning is given by u0
=−2. Gradient direction is opposite to Y axis. The intensity is rep-

resented in color scale increasing from blue to red. Other param-

eters are K=0.052 mm−1, I=2, and EI=0.8.
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ing time stdd, i.e., the time during which a structure remains
trapped in the defect after its formation. Two limit situations

can be distinguished in terms of these times; both situations

being characterized by a fully deterministic spatiotemporal

evolution of CS. The first situation is characterized by no

persistence of the structure inside the defect: once it is

formed, it leaves immediately the defect st f @tdd. This case
sFig. 5, left paneld is obtained for shallow defects and it has
been experimentally evidenced in f20g. The second situation
sFig. 5, right paneld is characterized by a relatively long per-
sistence of the structure into the defect td@t f and it is found

when dealing with deep defects whose steep walls strongly

pin the structure. The periodic flow of CS outside the defect

is characterized by a period T and a distance l between CS,

T corresponds to the time separation between the passages of

two consecutive CSs on a point of the VCSEL transverse

section. Then l /T=v, v being the speed of the CS. Let us

analyze the spatiotemporal dynamics of CS in each situation.

A. Shallow defect: tfštd

In Fig. 6, we display a sequence showing the startup of

the periodic CS flow for the case of a shallow defect sud

=0.25d. In this situation, the period T of the CS flow is T

<t f and t f turns out to be strongly dependent on system

parameters and defect characteristics.

As previously explained, t f is related to the time required
for the system to relax back to the stable solution sthe struc-
tured once the preceding one has gone. We have analyzed t f

as a function of different bifurcation parameters of the sys-
tem, namely, the value of u in the defect bottom su0−udd, the
input field amplitude EI, and the VCSEL bias current I, in

absence of the gradient. This dependence can be understood

in terms of critical slowing down of a system close to a

bifurcation. While there is no theoretical analysis of this phe-

nomenon available in spatially extended bistable systems,

critical slowing down has been widely investigated in zero-

dimensional systems f24g. In this case, the relaxation time is
characterized by a dependence on the bifurcation parameter

given by um−mcu
−1/2, with m being the generic parameter and

mc its critical value at the bifurcation f24g. As shown in Figs.
7 and 8, the fits of the numerical curves of t f reveal similar

laws as a function of EI and u0−ud, though the scaling ex-

ponent differs from
1

2
.

It is worth pointing out again that the value uc=−2.114 for

which the formation time t f diverges in Fig. 8 is slightly

different from p=−2.06, which is the corresponding value

obtained for a perfectly homogeneous device ssee Fig. 1d.
This is due to the limited size of the defect, as already dis-

cussed in Sec. II A.

As for the dependence of t f on the VCSEL bias, it appears

that changing this parameter does not correspond only to

change the parameter I in the equations. A change in the

(b)(a) (c) (d) (f)(e)

FIG. 6. Sequence of snapshots showing the spatiotemporal dynamics of drifting CSs in the transverse section of the VCSEL in presence

of a shallow defect. Intensity increases from black to white. The position of the defect corresponds to the high-intensity structure visible in

the first panel and the phase gradient is directed rightwards. Defect characteristics: u0=−2.0472, ud=0.25, and sd=11.25 mm. Other

parameters are EI=0.792, I=2.0024, K=0.052 mm−1, and ti=5 ns. The integration window measures about 2803280 mm.
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FIG. 7. sColor onlined Structure formation time on a defect as a
function of the holding beam amplitude EI. At t=0, the holding

beam amplitude is suddenly increased from the value EI=0.1 to the

new stationary value EI. We plot here t f as a function of EI. Other

parameters values are u0=−2.0472, ud=0.2, I=2.0024, and K

=0 mm−1. The fitting function is t f=t0+ sEI−EI,cd
b: t0=5.18 ns,

EI,c=0.790 63, and b=−0.58.
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FIG. 8. sColor onlined Structure formation time t f as a function

of the value of u at the defect bottom u0−ud. The defect profile is

introduced in the numerical simulations at t=0, starting from the

stationary solution corresponding to the perfectly homogeneous

case. Other parameters are u0=−2.0472, I=2.0024, EI=0.792, and

K=0 mm−1. The fitting functions are t f=t0+ suc−udb, t0=7.27 ns,

b=−0.76, and uc=−2.114.
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VCSEL bias implies also a variation of u0 because of the

change of the semiconductor refractive index caused by

Joule heating. In order to take into account this double effect

in the model, we have phenomenologically introduced a lin-

ear dependence of u0 on I f25g by putting u0=u0−5sI− Īd,

being u0=−2.0472 and Ī=2.0024 f14g. The dependence of t f

as a function of VCSEL bias is plotted in Fig. 9.

Outside of the defect, the CS flow is characterized by

their drifting speed v which depends on the holding beam

phase gradient K, according to Fig. 3. The influence of K

does not concern only v but also t f due to the effective

correction to the detuning value of the whole device given by

Eq. s4d engendered by the application of the phase gradient,
as explained in Sec. II B. Therefore, also the value of u at the

defect bottom is affected by this correction and, as a conse-

quence, t f increases as well as shown in Fig. 10. When K

exceeds a critical value, the structure formation does not oc-

cur anymore on the defect st f→`d. This explains why the
curve in Fig. 10 stops for K larger than 0.055 mm−1.

The separation l between drifting CSs is given by l

=vt f. This is a very important characteristic of the spatiotem-

poral dynamics observed because if the CSs get too close

each other, they interact. This interaction leads to a complex

behavior and destroys the regular flow of CS, as it will be

shown in Sec. III C. The dependence of l on K is plotted in

Fig. 10. Since both t f and v increase with K, also the dis-

tance between drifting CSs increases with K, which is ben-

eficial in order to avoid interactions. This is particularly im-

portant for applications such as the delay line or the shift

register f15g. As a matter of fact, on the left side of Fig. 10,
the curve stops because for smaller values of K, no regular

periodic regime is observed anymore: the distance between

two successive drifting CSs becomes smaller than their in-

teraction distance ssee also Sec. III Cd.

B. Deep defect: tdštf

The second regime that we will analyze is the one ob-

served in presence of a deep defect. It is characterized by the

persistence of the structure inside the defect after its regen-

eration, as shown in the spatiotemporal diagram of Fig. 5,

right panel. In Fig. 11, we display a sequence showing the

startup of the periodic CS flow for the case of a deep defect

sud=0.45d.
In this case, the steepness of the defect walls tightly pins

the structure and the value of the phase gradient applied be-

comes critical in order to detach the structure. If the force

engendered by the holding beam phase gradient is barely

stronger than the pinning force of the defect, then the struc-

ture velocity is very small close to the defect walls and it

takes a long time to escape from the defect. While in the case

of a shallow defect td is negligible with respect to t f, the

opposite happens in the case of a deep defect and the period

of the CS flow is T<td. As a matter of fact, t f becomes

smaller as the defect gets deeper si.e., as ud increases, see

Fig. 8d, thus the dynamics is ruled by td. At difference from

t f, td is not affected by the system parameters EI and I.

Instead, given a defect depth, td depends critically on K and

it decreases when K is increased, since the speed of the struc-
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τ
f
(n
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FIG. 9. Structure formation time t f as a function of VCSEL

bias. The defect profile is introduced in the numerical simulations at

t=0, starting from the stationary solution corresponding to the per-

fectly homogeneous case. The defect depth is ud=0.2, while u0
changes with the injected current due to Joule heating ssee textd.
Other parameters are K=0 mm−1 and EI=0.792.
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FIG. 10. Structure formation time in the defect t f scirclesd and
distance l scrossesd between drifting CSs measured outside the de-
fect s80 mm far apartd as a function of K in presence of a shallow
defect ud=0.20. All other parameters are as in Fig. 6

(b)(a) (c) (d) (f)(e)

FIG. 11. Sequence of snapshots showing the spatiotemporal dynamics of drifting CSs in the transverse section of the VCSEL in the

presence of a deep defect. The position of the defect corresponds to the high-intensity structure visible in the first panel and the phase

gradient is directed rightwards. The defect characteristics are as in Fig. 6 except for ud=0.45. Other parameters are as in Fig. 6.
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ture inside the defect is increased. In an equivalent manner,

for a fixed phase gradient, td is strongly dependent on the

defect depth and steepness since, as shown in Fig. 2, the

deeper is the defect, the stronger is its pinning force.

The dependence of td and of the separation between drift-

ing CSs sld is plotted in Fig. 12 as a function of K. On the
left side of the figure, the curves stop when K is too small to

detach the structure from the defect std→` and l→`d. On
the right side, for large value of K, both td and l become too

small and no regular periodic regime is observed because of

CS interactions ssee also Sec. III Cd. By further increasing K,

the value of u at the defect bottom increases due to the cor-

rection s4d. Thus, t f increases accordingly and it eventually

becomes larger than td, thus leading to the situation de-

scribed in Sec. III A. Further increasing of K affects CS sta-

bility outside the defect, as described in Sec. II B.

C. Overview and hybrid situation

As a function of the defect depth ud and the gradient

strength K in the holding beam phase, the whole set of dif-

ferent spatiotemporal regimes has been mapped in Fig. 13.

Region I is the one characterized by t f @td sshallow de-

fectsd, while region II is the one where t f !td sdeep defectsd.
Hybrid situations characterized by strong interactions be-

tween the drifting CSs appear in between sregion IIId. In this
regime, complex cooperative effects as bunching and col-

lapsing are observed, as well as the formation of a propaga-

tive filament, as shown in Fig. 14. In region IV, no dynamics

is observed because td is infinite: the structure cannot leave

the defect because the pinning force is larger than the force

engendered by the phase gradient. As expected, the critical

value of K necessary to overcome the pinning force increases

with the defect depth. In region V, no spontaneous formation

of the structures is observed in the defect because the value

of u at the bottom of the defect becomes larger than the

critical value above which t f goes to infinite. Finally, region

VI corresponds to the situation where no dynamics is ob-

served because the CS is unstable outside the defect, though

t f remains finite and a structure spontaneously forms in the

defect. This is due to the correction s4d, as already mentioned
in Sec. II B. In this case, as soon as the structure is detached,

it dies after a short propagation.

IV. COLLISION BETWEEN A DEFECT

AND A MOVING CS

In this section, we analyze the case of a CS drifting in the

transverse section of the device when it collides with a de-

fect. CS movement may be perturbed by defects since the

defect itself engenders a parameter gradient su in our de-
scriptiond that entails a force on the drifting CSs f22g. This
force competes with the one exerted by the holding beam

phase gradient, resulting in a trajectory that may deviate

from the direction fixed by the phase gradient f19g. CS tra-
jectory may be forced along the phase gradient direction by

injecting the holding beam in form of a stripe with the same

direction of the phase gradient. The intensity profile of the

holding beam creates a channel along which the CS is

bounded f15g. In this case, the trajectory of the CS cannot be
deviated from the direction fixed by the channel, but the

value of CS speed is affected by the presence of the defect
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FIG. 12. Structure detaching time in the defect td scirclesd and
distance l scrossesd between drifting CSs measured outside the de-
fect s80 mm far apartd as a function of K in presence of a deep

defect: ud=0.5. All other parameters are as in Fig. 6.
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FIG. 13. sColor onlined Qualitative map obtained by observing
numerically the different spatiotemporal regimes as a function of ud

and K. All other parameters are as in Fig. 6

(b)(a) (c) (d) (f)(e)

FIG. 14. Sequence of snapshots showing the spatiotemporal dynamics of drifting CSs in the transverse section of the VCSEL. The

position of the defect corresponds to the high-intensity structure visible in the first panel and the phase gradient is directed rightwards. The

defect characteristics are as in Fig. 6 except for ud=0.35. All other parameters are as in Fig. 6.
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and CS may be pinned by the defect walls. We analyze this

situation, which has been experimentally reported in f15g, in
presence of both attractive and repulsive defects.

In the perturbative limit ssmall gradientsd, the CS speed at
a point of the space is proportional to the value of the pa-

rameter gradient in this point f21g. Therefore, the key ele-
ment defining the interaction between the defect and the

moving CS is the steepness of the defect walls, i.e., the de-

rivative of u, calculated in the direction of the motion sthat
we identify with the x axisd. The comparison between the
force engendered by the holding phase gradient and the pin-

ning force of a defect can be realized by analyzing the CS

speed when crossing a defect for different defect steepness.

This can be varied by changing the value of b in Eq. s3d, but
maintaining the same values for u0 and ud, as shown in Fig.

15. The defect width sd has been enlarged with respect to the

one used in Sec. III in order to isolate the pinning effect of a

single defect wall on the drifting CS. Otherwise, the finite

size of CS makes unavoidable that the edge part of CS inter-

acts with the second wall while the back part is still interact-

ing with the first wall. Furthermore, the value of ud is chosen

such that the value of u at the defect bottom or top is com-

patible with CS existence. Then, the moving CS will survive

when crossing the defect and no spontaneous generation of

structures occurs on the defect.

The result of our analysis is plotted in Fig. 16 where,

together with the defect profile and its derivative, we plot the

CS speed as a function of the spatial position. Here, the

phase gradient is directed rightwards and the CS moves from

left to right. The plotted curves indicate that the CS speed

varies significantly when interacting with defect walls. In the

case of a moderately steep attractive defect fFig. 16sadg, the
CS undergoes an acceleration upon entering the defect sleft
boundaryd and is decelerated when exiting the defect sright
boundaryd, i.e., when the effects of phase and detuning gra-
dients tend to compensate each other.

When the steepness of the defect becomes sufficiently

large, the velocity of the CS at the right edge of the defect

will eventually vanish, causing a pinning of the CS. We re-

mark that as soon as the defect steepness overcomes the

minimal value required to compensate the effect of the phase

gradient, not only one but two points with zero velocity si.e.,

fixed pointsd will exist. These two fixed points, spatially
separated by a region of negative sleftwardsd velocity, will
have opposite stabilities: the left one being stable and the

right one being unstable. On Fig. 16sbd, a CS coming from
the left side of the device is stuck on the stable fixed point
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FIG. 15. sColor onlined Super-Gaussian attractive defect profile
scut at y=y0d for different values of b. Other defect characteristics

are ud=60.03, u0=−2.0, and sd=27 mm.
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FIG. 16. CS speed when crossing an fsad and sbdg attractive-fscd
and sddg repulsive defect. The holding beam phase gradient has the
same direction of x axis. The CS speed is plotted by the black line

with points while the defect profile is plotted by the gray line. The

dotted line is the derivative of u: du /dx. The defect wall steepness,

i.e., the value of du /dx, is changed without changing the defect

depth or height which is fixed to ud=60.03 with u0=−2.0 and

sd=27 mm. We change the value of the exponent b in Eq. s3d. In
sad and scd, b=7 and the maximum value of the derivative of u

sdotted lined is 0.005 mm−1. In sbd and sdd, b=9 and the maximum

value of the derivative of u sdotted lined is 0.006 mm−1. Other

parameters are K=0.0038 mm−1, EI=0.792, and I=2.0.
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and will therefore never exit the defect. It is interesting to

note that the transition from the pinning to unpinning of a CS

on a defect, involving the collision and disappearance of two

fixed points, corresponds to a saddle-node bifurcation which

takes place for a defect steepness such that the maximum of

the detuning gradient exactly compensates the phase gradi-

ent.

A similar phenomenon occurs in the case of a repulsive

defect fFigs. 16scd and 16sddg with the CS velocity increas-
ing when the effects of phase and detuning gradients add up

sright side of the defect in this cased and velocity decreasing
eventually down to zero when they compensate fleft side of
the defect, Fig. 16sddg. It is important to notice that, in ab-
sence of the intensity channel which reduces the motion es-

sentially to one dimension s1Dd, in the case of the repulsive
defect, the traveling CS would be free to avoid the defect,

deviating from its trajectory, instead of being pinned at the

defect feet.

V. CS APPLICATIONS IN PRESENCE

OF DEVICE DEFECTS

Some of the most promising applications of CS rely on

their property to drift in the presence of a parameter gradient.

The easiest form to implement an external and controllable

gradient is to introduce a phase gradient in the holding beam.

The movement of CS under this gradient can be exploited for

all-optical delay lines and shift-register memories and it has

been experimentally demonstrated in a semiconductor mi-

croresonator in f15g. One of the outcomes of these experi-
ments was that defects of the semiconductor device may af-

fect detrimentally these applications. Hence, it is very

important to characterize their interaction with holding beam

phase gradients introduced for propelling CS along the de-

vice section. This comparison requires numerical integration

of system equations for different defect steepness and for

different gradient strength, since it is not straightforward to

compare the forces engendered by different parameters gra-

dients. In Sec. IV, we have shown numerically how the de-

fect interacts with a CS propelled by a gradient in the phase

of the holding beam. We have also calculated the critical

value of the defect steepness above which the CS drift is

stopped. This analysis confirms also that the CS speed is, at

each point of the space, linked to the value of the gradient of

the defect profile, thus indicating that the steepness of defect

walls is the key parameter in the interaction between the

defect and the drifting CS.

In this paper, we have also shown that the interplay be-

tween device defects and a phase gradient in the holding

beam may lead to a regular sequence of CSs springing from

the defect and moving in the gradient direction, which we

called CS tap. Our study suggests that defectlike spots can be

engineered in the transverse plane of the device in order to

create device built-in CS sources, thus avoiding the use of a

writing beam to generate CS.

CS generation rate can be set by controlling the system

parameters or by engineering the defect characteristics. De-

fects with different height or depth and size could be engi-

neered to obtain simultaneously CS sources with different

properties in the same device. The behavior upon variations
of the VCSEL bias current suggests that, by means of a weak
modulation of the pumping current, it may be possible to
modulate the distance between CS and the velocity of the

flow, keeping constant the value of the phase gradient gen-

erating the motion. Moreover, it may be even possible to stop

the CS generation without perturbing either the CS stability

or their speed outside the defect by simply varying the

pumping level across the critical value where the formation

time of the structure goes to infinity ssee Fig. 9d.
This sensitivity of CS generation on the pumping current

also suggests the possibility of realizing a delay line for digi-

tal signals where a bit value of “1” is stored as a drifting CS

and the input signal is used for modulating the VCSEL

pumping current. This represents an optoelectronic method

to store information bits in form of moving CS, thus realiz-

ing a serial to parallel converter. For applications such as the

delay line, it is important that no “errors” appear during the

spatial propagation: the spatial separation among the differ-

ent pulses must be such that no interactions take place

among the moving CS. A deep knowledge of the spatiotem-

poral behavior of the system as a function of the key param-

eters stypically, K and ud, such as the one summarized in Fig.
13 would allow for a correct working of the line. In particu-

lar, it will be important to avoid the region labeled as III,

where the drifting CS may interact along the line affecting

the data series to transmit. Studying curves such as those

shown in Figs. 10 and 12 would be of great help to realize

such devices.

Finally, the CS flow can also be modified by injecting an

optical perturbation onto the defect originating the flow. In

particular, it is possible to interrupt the CS flux for a certain

interval of time by injecting a Gaussian incoherent beam in

the defect position without varying all the other parameters.

This acts as an erasing beam and, as long as it is on, it stops

the CS emission. When the injected beam is switched off

0 20 40 60 80 100

t (ns)

|E|

FIG. 17. Time trace in a point on the “channel” defined by the

gradient direction, situated 22.5 mm apart from the defect, when a

narrow incoherent beam is injected into the defect stopping the CS

production. As soon as the injection stops, the CS flux starts again.

The duration of the simulation is 100 ns, with 50 ns free evolution,

10 ns injection inhibition, and 40 ns free evolution. Parameters are

ud=0.2, u0=−2.0, I=2, EI=0.8, and K=0.042 mm−1.
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again, a new structure is spontaneously created in the defect

and the CS flux starts again. We obtain therefore a perfect

control on CS emission and this would permit us to realize a

delay line where information is encoded by erasing pulses in

a periodical sequence instead of writing them. At difference

with the use of a writing beam, this operation can be realized

by using an optical perturbation not necessarily coherent

with the holding beam, thus simplifying remarkably the ex-

perimental scheme. In Figs. 17 and 18, we show a numerical

simulation where we implement this operation. After emis-

sion of four drifting CS, we inject on the defect an incoher-

ent narrow beam for 10 ns and we are able to suppress CS

emission. When the perturbation is removed, the CS emis-

sion starts again. In Fig. 17, we show the time trace in a

point 22.5 mm apart from the defect along the channel de-

fined by the gradient direction. The sequence of pulse results

inhibited during the injection sfrom T=50 ns to T=60 nsd
and does not start again until a new structure is created at the

defect position and removed by the gradient. In Fig. 18, we

show a sequence of snapshots illustrating different stages of

continuous creation and inhibition of CSs.

VI. CONCLUSIONS

In this paper, we have analyzed numerically the effects of

device defects on drifting CS. Device defects have been

modeled as small-scale variations of the cavity detuning pa-

rameter.

We have analyzed the spatiotemporal dynamics arising

from the interaction between defects and a holding beam

phase gradient, shedding light on the periodic regime of CS

springing from the defect that has been recently experimen-

tally observed f20g. We have identified two regimes, where
the CS flow is ruled by two different characteristic times: the

time required for the structure formation upon the defect and

the detaching time, i.e., the time for the structure to leave the

defect. While the former is strongly influenced by system

parameters, the latter depends mainly on the gradient

strength in the holding beam phase. We have mapped the

different spatiotemporal regimes in the parameter space

sK ,udd where the two regimes described before can be indi-
viduated. Other regimes are possible, where the CS flow be-

comes irregular due to interactions among the moving CS.

We have also shown that the introduction of the phase

gradient of the holding beam has several consequences on

the dynamics of drifting CS. Besides pushing the structure

out of the defect and determining the CS speed outside of the

defect, the phase gradient implies an effective correction to

the cavity detuning parameter of the device, which may in-

fluence CS stability. We have shown how this correction, for

large phase gradient, affects deeply the CS spatiotemporal

dynamics.

We have also studied the collision between a traveling CS

and a defect placed on its trajectory, which may affect detri-

mentally applications such as CS-based delay lines. We have

compared the force engendered by the phase gradient induc-

ing the motion and the pinning force generated by the defect.

Whether CS stops or passes through the defect depends on

which of these two forces is stronger.

Finally, we proposed some applications based on the pe-

riodic generation of traveling CS. In particular, we have

demonstrated numerically that the CS flow can be stopped by

injecting a narrow incoherent pulse onto the defect. This op-

eration allows for external control of the CS flow and thus

for the incoherent encoding of information along a delay line

based on this periodic regime.
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FIG. 18. Sequence of snapshots illustrating different stages of continuous creation and inhibition of CSs ssame simulation as Fig. 17d. The
defect position corresponds to the CS in the first frame and the phase gradient is directed upwards. The injection starts just before frame 5

and stops after frame 6. From left to right, the frames are taken every 12 ns, starting at the fourth ns s4, 16, 28, 40, 52, 64, 76, 88, 100 nsd.
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