30 research outputs found

    Hybrid power-heat microgrid solution using hydrogen as an energy vector for residential houses in Spain. A case study

    Get PDF
    In order to favor a transition to a renewable energy economy, it is necessary to study the possible permeation of renewable energy sources not only in the electric grid or industrial scale, but also in the small householding scale. One of the most interesting technologies available for this purpose is solar energy, since it is a mature technology that can be easily installed in every rooftop. Thus, a techno-economic assessment was carried out to evaluate the installation of a solar-based power-heat hybrid microgrid considering the use of hydrogen as an energy vector in a typical residential house in Spain. Lead-acid batteries plus the photovoltaic and solar thermal energy installation are complemented with a hydrogen system composed of an electrolyzer, two metal hydride bottles, and a fuel cell. A simulation tool has been generated using experimental models developed and validated with real equipment for each one of the electric microgrid component. Three operating modes were tested making use of this tool to better manage the energy consumed/produced and optimize the economic output of the facility. The results show that setting up a hydrogen-based microgrid in a residential house is unviable today, mainly due to the high cost of hydrogen generation and consumption equipment. If only solar energy is considered, the microgrid inversion (12.500 €) is recovered in ten years. On the other hand, selling the electricity output has almost no repercussions considering current electrical rates in Spain. Finally, while using an optimization algorithm to manage energy use, battery life-spam, and economic benefit slightly increase. However, this profit may not be enough to justify the use of a more complex control system. The results of this research will help users, renewable energy companies, investigators, and policymakers to better understand the different factors influencing the spread of renewable smart grids in households and propose solutions to address these.Junta de Andalucía - Consejería de Conocimiento, Investigación y Universidad PY18-RE-002

    Conversion of aqueous ethanol/acetaldehyde mixtures into 1,3-butadiene over a mesostructured Ta-SBA-15 catalyst: Effect of reaction conditions and kinetic modelling

    Get PDF
    This paper studies key issues for the design of industrial ethanol to 1,3-butadiene two-step processes, focusing on the second catalytic reaction step, for which a Ta-SBA-15 catalyst was chosen as a representative of the new generation of two-step catalysts. The important practical aspects studied were: i) the effect of operating conditions and the presence of impurities (water) in the ethanol feedstock on the performance of the catalyst, ii) stability and regeneration of the catalyst, and iii) the development of a kinetic model that can be used as a tool for designing the industrial process. The results showed that there are large non-linear interacting effects between the reaction conditions (temperature, space velocity and ethanol/acetaldehyde mole ratio) which must be carefully selected to optimize the catalyst performance. When shifting from an anhydrous to an aqueous ethanol/acetaldehyde feed (7.5 wt% water), catalyst performance at high temperature barely changed while at low temperature, conversion of ethanol and acetaldehyde decreased. Water in the feed largely increased the stability of Ta-SBA-15 catalyst. Finally, a kinetic model of a fresh catalyst was developed, whose novelty lies in the use of kinetic equations that account for the effect of water in the feed on the catalyst performance.Ministerio de Economía, Industria y Competitividad CTQ2015-71427-

    Water liquid distribution in a bioinspired PEM fuel cell

    Get PDF
    This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)Water management is a key factor in the operation of hydrogen fuel cells since its formation may lead to significant mass transport losses, oxygen diffusion limitation and membrane durability issues. In this work, the effect of different operating conditions on the liquid water distribution inside a 50 cm2 active area bio-inspired PEM fuel cell has been studied. Therefore, a set of experiments was designed varying cell pressure, the reactants relative humidity (anode and cathode), temperature, and cell current density. Liquid water distribution for each operating condition was determined using neutron imaging technique as it has been proved to be an excellent technique for this purpose, including quantitative analysis and water profiles in the different areas of the bio-inspired flow field. The results show that high relative humidity of the inlet gas flows, high pressure, low temperatures and low current density favor the accumulation of water in the flow field channels and GDL. Specifically, water accumulates preferentially in the anode side that make contact with the low part of the cathode foams inserted in the flow field, instead of blocking the closest area to the gases outlets points

    Renewable medium-small projects in Spain: Past and present of microgrid development

    Get PDF
    This paper reviews the on-going research studies and microgrid pilot projects focusing on the Spanish case because of its renewable energy potential with the objective set on highlights the main investigation drifts in the field such as the used technologies, control methods and operation challenges. That way, several smart grids have been commented and compared, finding that photovoltaic and wind power are the favourites energy generation technologies. Although batteries are the most widespread energy storage systems, green hydrogen has a strong presence, showing up in a third of the Spanish smart grids. Traditional control strategies are being displaced by advanced ones such as MPC or fuzzy logic due to its higher efficiency. The reader will have a clear view of the potential of renewable energy penetration in the form of smart grids in Spain, through the study of the equipment involved in the different facilities contribution and the main control strategies implemented, in a comparative analysis of the key aspect of this emerging technology.Consejería de Conocimiento, Investigación y Universidad - Junta de Andalucía PY18-RE-002

    Assessing the sensitivity of data-limited methods for resources in the Atlantic waters

    Get PDF
    ICES Annual Science Conference 2021, online 6-10 SeptemberLength-based methods have been widely applied to estimate biological parameters and to under-stand the dynamics of marine resource populations within the category of data-limited stocksThe authors thank the financial support of the project IMPRESS (RTI2018-099868-B-I00) project, ERDF, Ministry of Science, Innovation and Universities - State Research Agency, and also of GAIN (Xunta de Galicia), GRC MERVEX (nº IN607-A 2018-4)N

    Applying length-based assessment methods to fisheries resources of the Bay of Biscay and Atlantic Iberian Waters: stock status and parameters sensitivity

    Get PDF
    ASLO 2021 Aquatic Sciences Virtual Meeting, 22–27 June 2021Length-based methods have been widely applied to estimate biological parameters and to understand the dynamics of marine resource populations within the category of data-limited stocksProject IMPRESS (RTI2018-099868-B-I00), ERDF, Ministry of Science, Innovation and Universities - State Research Agency, and also of GAIN (Xunta de Galicia), GRC MERVEX (nº IN607-A 2018-4)N

    Treatment with tocilizumab or corticosteroids for COVID-19 patients with hyperinflammatory state: a multicentre cohort study (SAM-COVID-19)

    Get PDF
    Objectives: The objective of this study was to estimate the association between tocilizumab or corticosteroids and the risk of intubation or death in patients with coronavirus disease 19 (COVID-19) with a hyperinflammatory state according to clinical and laboratory parameters. Methods: A cohort study was performed in 60 Spanish hospitals including 778 patients with COVID-19 and clinical and laboratory data indicative of a hyperinflammatory state. Treatment was mainly with tocilizumab, an intermediate-high dose of corticosteroids (IHDC), a pulse dose of corticosteroids (PDC), combination therapy, or no treatment. Primary outcome was intubation or death; follow-up was 21 days. Propensity score-adjusted estimations using Cox regression (logistic regression if needed) were calculated. Propensity scores were used as confounders, matching variables and for the inverse probability of treatment weights (IPTWs). Results: In all, 88, 117, 78 and 151 patients treated with tocilizumab, IHDC, PDC, and combination therapy, respectively, were compared with 344 untreated patients. The primary endpoint occurred in 10 (11.4%), 27 (23.1%), 12 (15.4%), 40 (25.6%) and 69 (21.1%), respectively. The IPTW-based hazard ratios (odds ratio for combination therapy) for the primary endpoint were 0.32 (95%CI 0.22-0.47; p < 0.001) for tocilizumab, 0.82 (0.71-1.30; p 0.82) for IHDC, 0.61 (0.43-0.86; p 0.006) for PDC, and 1.17 (0.86-1.58; p 0.30) for combination therapy. Other applications of the propensity score provided similar results, but were not significant for PDC. Tocilizumab was also associated with lower hazard of death alone in IPTW analysis (0.07; 0.02-0.17; p < 0.001). Conclusions: Tocilizumab might be useful in COVID-19 patients with a hyperinflammatory state and should be prioritized for randomized trials in this situatio

    The evolution of the ventilatory ratio is a prognostic factor in mechanically ventilated COVID-19 ARDS patients

    Get PDF
    Background: Mortality due to COVID-19 is high, especially in patients requiring mechanical ventilation. The purpose of the study is to investigate associations between mortality and variables measured during the first three days of mechanical ventilation in patients with COVID-19 intubated at ICU admission. Methods: Multicenter, observational, cohort study includes consecutive patients with COVID-19 admitted to 44 Spanish ICUs between February 25 and July 31, 2020, who required intubation at ICU admission and mechanical ventilation for more than three days. We collected demographic and clinical data prior to admission; information about clinical evolution at days 1 and 3 of mechanical ventilation; and outcomes. Results: Of the 2,095 patients with COVID-19 admitted to the ICU, 1,118 (53.3%) were intubated at day 1 and remained under mechanical ventilation at day three. From days 1 to 3, PaO2/FiO2 increased from 115.6 [80.0-171.2] to 180.0 [135.4-227.9] mmHg and the ventilatory ratio from 1.73 [1.33-2.25] to 1.96 [1.61-2.40]. In-hospital mortality was 38.7%. A higher increase between ICU admission and day 3 in the ventilatory ratio (OR 1.04 [CI 1.01-1.07], p = 0.030) and creatinine levels (OR 1.05 [CI 1.01-1.09], p = 0.005) and a lower increase in platelet counts (OR 0.96 [CI 0.93-1.00], p = 0.037) were independently associated with a higher risk of death. No association between mortality and the PaO2/FiO2 variation was observed (OR 0.99 [CI 0.95 to 1.02], p = 0.47). Conclusions: Higher ventilatory ratio and its increase at day 3 is associated with mortality in patients with COVID-19 receiving mechanical ventilation at ICU admission. No association was found in the PaO2/FiO2 variation
    corecore