99 research outputs found

    The Diversity of Coral Reefs: What Are We Missing?

    Get PDF
    Tropical reefs shelter one quarter to one third of all marine species but one third of the coral species that construct reefs are now at risk of extinction. Because traditional methods for assessing reef diversity are extremely time consuming, taxonomic expertise for many groups is lacking, and marine organisms are thought to be less vulnerable to extinction, most discussions of reef conservation focus on maintenance of ecosystem services rather than biodiversity loss. In this study involving the three major oceans with reef growth, we provide new biodiversity estimates based on quantitative sampling and DNA barcoding. We focus on crustaceans, which are the second most diverse group of marine metazoans. We show exceptionally high numbers of crustacean species associated with coral reefs relative to sampling effort (525 species from a combined, globally distributed sample area of 6.3 m2). The high prevalence of rare species (38% encountered only once), the low level of spatial overlap (81% found in only one locality) and the biogeographic patterns of diversity detected (Indo-West Pacific>Central Pacific>Caribbean) are consistent with results from traditional survey methods, making this approach a reliable and efficient method for assessing and monitoring biodiversity. The finding of such large numbers of species in a small total area suggests that coral reef diversity is seriously under-detected using traditional survey methods, and by implication, underestimated

    Parental Monitoring During Early Adolescence Deters Adolescent Sexual Initiation: Discrete-Time Survival Mixture Analysis

    Get PDF
    We used discrete-time survival mixture modeling to examine 5,305 adolescents from the 1997 National Longitudinal Survey of Youth regarding the impact of parental monitoring during early adolescence (ages 14–16) on initiation of sexual intercourse and problem behavior engagement (ages 14–23). Four distinctive parental-monitoring groups were identified and labeled as “High,” “Increasing,” “Decreasing,” and “Low”. About 68% of adolescents received a high level of parental monitoring from ages 14 to 16 (High), 6 and 9% respectively exhibited an accelerated (Increasing) and a decelerated trajectory (Decreasing), and 17% had consistently low parental monitoring (Low). Relative to participants in the Low group, adolescents in the High group delayed sexual initiation by 1.5 years. Males, relative to females, were more likely to have had a low trajectory of parental monitoring, and were more likely to initiate sexual intercourse before age 14. In contrast to White Adolescents, Hispanics and Blacks were less likely to receive High parental monitoring, and had a higher rate of early sexual initiation before age 14. The study demonstrates the temporal relationship of parental monitoring with adolescent sexual initiation from a longitudinal perspective. An increase of parental monitoring across ages is accompanied with a decrease of sexual risk. The continual high level of parental monitoring from ages 14 to 16 also mitigated the risk of engagement in substance use and delinquent behaviors from ages 14 to 23

    Chromite oxidation by manganese oxides in subseafloor basalts and the presence of putative fossilized microorganisms

    Get PDF
    Chromite is a mineral with low solubility and is thus resistant to dissolution. The exception is when manganese oxides are available, since they are the only known naturally occurring oxidants for chromite. In the presence of Mn(IV) oxides, Cr(III) will oxidise to Cr(VI), which is more soluble than Cr(III), and thus easier to be removed. Here we report of chromite phenocrysts that are replaced by rhodochrosite (Mn(II) carbonate) in subseafloor basalts from the Koko Seamount, Pacific Ocean, that were drilled and collected during the Ocean Drilling Program (ODP) Leg 197. The mineral succession chromite-rhodochrosite-saponite in the phenocrysts is interpreted as the result of chromite oxidation by manganese oxides. Putative fossilized microorganisms are abundant in the rhodochrosite and we suggest that the oxidation of chromite has been mediated by microbial activity. It has previously been shown in soils and in laboratory experiments that chromium oxidation is indirectly mediated by microbial formation of manganese oxides. Here we suggest a similar process in subseafloor basalts

    Invasion of Ureaplasma diversum in bovine spermatozoids

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Ureaplasma diversum </it>has been associated with infertility in cows. In bulls, this mollicute colonizes the prepuce and distal portion of the urethra and may infect sperm cells. The aim of this study is to analyze <it>in vitro </it>interaction of <it>U. diversum </it>isolates and ATCC strains with bovine spermatozoids. The interactions were observed by confocal microscopy and the gentamycin internalization assay.</p> <p>Findings</p> <p><it>U. diversum </it>were able to adhere to and invade spermatozoids after 30 min of infection. The gentamicin resistance assay confirmed the intracellularity and survival of <it>U. diversum </it>in bovine spermatozoids.</p> <p>Conclusions</p> <p>The intracellular nature of bovine ureaplasma identifies a new difficulty to control the reproductive of these animals.</p

    Invited Commentary: Broadening the Evidence for Adolescent Sexual and Reproductive Health and Education in the United States

    Get PDF

    Mineralogical and geochemical analysis of Fe-phases in drill-cores from the Triassic Stuttgart Formation at Ketzin CO₂ storage site before CO₂ arrival

    Get PDF
    Reactive iron (Fe) oxides and sheet silicate-bound Fe in reservoir rocks may affect the subsurface storage of CO2 through several processes by changing the capacity to buffer the acidification by CO2 and the permeability of the reservoir rock: (1) the reduction of three-valent Fe in anoxic environments can lead to an increase in pH, (2) under sulphidic conditions, Fe may drive sulphur cycling and lead to the formation of pyrite, and (3) the leaching of Fe from sheet silicates may affect silicate diagenesis. In order to evaluate the importance of Fe-reduction on the CO2 reservoir, we analysed the Fe geochemistry in drill-cores from the Triassic Stuttgart Formation (Schilfsandstein) recovered from the monitoring well at the CO2 test injection site near Ketzin, Germany. The reservoir rock is a porous, poorly to moderately cohesive fluvial sandstone containing up to 2–4 wt% reactive Fe. Based on a sequential extraction, most Fe falls into the dithionite-extractable Fe-fraction and Fe bound to sheet silicates, whereby some Fe in the dithionite-extractable Fe-fraction may have been leached from illite and smectite. Illite and smectite were detected in core samples by X-ray diffraction and confirmed as the main Fe-containing mineral phases by X-ray absorption spectroscopy. Chlorite is also present, but likely does not contribute much to the high amount of Fe in the silicate-bound fraction. The organic carbon content of the reservoir rock is extremely low (<0.3 wt%), thus likely limiting microbial Fe-reduction or sulphate reduction despite relatively high concentrations of reactive Fe-mineral phases in the reservoir rock and sulphate in the reservoir fluid. Both processes could, however, be fuelled by organic matter that is mobilized by the flow of supercritical CO2 or introduced with the drilling fluid. Over long time periods, a potential way of liberating additional reactive Fe could occur through weathering of silicates due to acidification by CO2

    Conserved and variable correlated mutations in the plant MADS protein network

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Plant MADS domain proteins are involved in a variety of developmental processes for which their ability to form various interactions is a key requisite. However, not much is known about the structure of these proteins or their complexes, whereas such knowledge would be valuable for a better understanding of their function. Here, we analyze those proteins and the complexes they form using a correlated mutation approach in combination with available structural, bioinformatics and experimental data.</p> <p>Results</p> <p>Correlated mutations are affected by several types of noise, which is difficult to disentangle from the real signal. In our analysis of the MADS domain proteins, we apply for the first time a correlated mutation analysis to a family of interacting proteins. This provides a unique way to investigate the amount of signal that is present in correlated mutations because it allows direct comparison of mutations in various family members and assessing their conservation. We show that correlated mutations in general are conserved within the various family members, and if not, the variability at the respective positions is less in the proteins in which the correlated mutation does not occur. Also, intermolecular correlated mutation signals for interacting pairs of proteins display clear overlap with other bioinformatics data, which is not the case for non-interacting protein pairs, an observation which validates the intermolecular correlated mutations. Having validated the correlated mutation results, we apply them to infer the structural organization of the MADS domain proteins.</p> <p>Conclusion</p> <p>Our analysis enables understanding of the structural organization of the MADS domain proteins, including support for predicted helices based on correlated mutation patterns, and evidence for a specific interaction site in those proteins.</p
    corecore