59 research outputs found

    Brain stem tumors in children less than 3 months: Clinical and radiologic findings of a rare disease

    Get PDF
    \ua9 The Author(s) 2024.Purpose: Brain stem tumors in children < 3 months at diagnosis are extremely rare. Our aim is to study a retrospective cohort to improve the understanding of the disease course and guide patient management. Methods: This is a multicenter retrospective analysis across the European Society for Pediatric Oncology SIOP-E HGG/DIPG Working Group linked centers, including patients with a brainstem tumor diagnosed between 2009 and 2020 and aged < 3 months at diagnosis. Clinical data were collected, and imaging characteristics were analyzed blindly and independently by two neuroradiologists. Results: Five cases were identified. No patient received any therapy. The epicenter of two tumors was in the medulla oblongata alone and in the medulla oblongata and the pons in three. For patients with tumor in equal parts in the medulla oblongata and the pons (n = 3), the extension at diagnosis involved the spinal cord; for the two patients with the tumor epicenter in the medulla oblongata alone (n = 2), the extension at diagnosis included the pons (n = 2) and the spinal cord (n = 1). Biopsy was performed in one patient identifying a pilocytic astrocytoma. Two patients died. In one patient, autopsy revealed a high-grade glioma (case 3). Three survivors showed either spontaneous tumor regression (n = 2) or stable disease (n = 1). Survivors were followed up for 10, 7, and 0.6 years, respectively. One case had the typical imaging characteristics of a dorsal exophytic low-grade glioma. Conclusions: No patient fulfilled the radiologic criteria defining a high-grade glioma. Central neuroradiological review and biopsy may provide useful information regarding the patient management

    Transitioning to molecular diagnostics in pediatric high-grade glioma: Experiences with the 2016 WHO classification of CNS tumors

    Get PDF
    BACKGROUND: Pediatric neuro-oncology was profoundly changed in the wake of the 2016 revision of the WHO Classification of Tumors of the Central Nervous System. Practitioners were challenged to quickly adapt to a system of tumor classification redefined by molecular diagnostics. METHODS: We designed a 22-question survey studying the impact of the revised WHO classification on pediatric high-grade glioma. The survey collected basic demographics, general attitudes, issues encountered, and opinions on pediatric subtypes. Participant answers were analyzed along socioeconomic lines utilizing the human development index (HDI) of the United Nations and membership in the group of seven (G7) world economic forum. RESULTS: Four hundred and sixty-five participants from 53 countries were included, 187 pediatric neurooncologists (40%), 160 neuropathologists (34%), and 118 other experts (26%). When asked about pediatric high-grade glioma entities, participants from very high development countries preferred treating a patient based on genetic findings. Participants from high and medium development countries indicated using traditional histology and tumor location as mainstays for therapeutic decisions. Non-G7 countries tended to regard the introduction of molecularly characterized tumor entities as a problem for daily routine due to lack of resources. CONCLUSIONS: Our findings demonstrate an overall greater reliance and favorability to molecular diagnostics among very high development countries. A disparity in resources and access to molecular diagnostics has left some centers unable to classify pediatric high-grade glioma per the WHO classification. The forthcoming edition should strain to abate disparities in molecular diagnostic availability and work toward universal adaptation

    Pediatric high-grade gliomas and the WHO CNS Tumor Classification - Perspectives of pediatric neuro-oncologists and neuropathologists in light of recent updates

    Get PDF
    Background: The WHO Classification of Tumors of the Central Nervous System has undergone major restructuring. Molecularly defined diagnostic criteria were introduced in 2016 (revised 4th edition) and expanded in 2021 (5th edition) to incorporate further essential diagnostic molecular parameters. We investigated potential differences between specialists in perception of these molecularly defined subtypes for pediatric high-grade gliomas (pedHGG). Methods: We designed a 22-question survey studying the impact of the revised 4th edition of the WHO classification on pedHGG. Data were collected and statistically analyzed to examine the spectrum of viewpoints and possible differences between neuro-oncologists and neuropathologists. Results: 465 participants from 53 countries were included; 187 pediatric neuro-oncologists (40%), 160 neuropathologists (34%), and 118 additional experts (26%). Neuro-oncologists reported issues with the introduction of molecularly defined tumor types, as well as the abolishment or renaming of established tumor entities, while neuropathologists did not to the same extent. Both groups indicated less relevant or insufficient diagnostic definitions were available in 2016. Reported issues were classified and assessed in the 2021 WHO classification and a substantial improvement was perceived. However, issues of high clinical relevance remain to be addressed, including the definition of clinical phenotypes for diffuse intrinsic pontine glioma and gliomatosis cerebri. Conclusions: Within the WHO classification of pediatric brain tumors, such as pedHGG, rapid changes in molecular characterization have been introduced. This study highlights the ongoing need for cross talk between pathologist and oncologist to advance the classification of pedHGG subtypes and ensure biological relevance and clinical impact

    A subset of pediatric-type thalamic gliomas share a distinct DNA methylation profile, H3K27me3 loss and frequent alteration of EGFR

    Get PDF
    Background: Malignant astrocytic gliomas in children show a remarkable biological and clinical diversity. Small in-frame insertions or missense mutations in the epidermal growth factor receptor gene (EGFR) have recently been identified in a distinct subset of pediatric-type bithalamic gliomas with a unique DNA methylation pattern. Methods: Here, we investigated an epigenetically homogeneous cohort of malignant gliomas (n = 58) distinct from other subtypes and enriched for pediatric cases and thalamic location, in comparison with this recently identified subtype of pediatric bithalamic gliomas. Results EGFR gene amplification was detected in 16/58 (27%) tumors, and missense mutations or small in-frame insertions in EGFR were found in 20/30 tumors with available sequencing data (67%; 5 of them co-occurring with EGFR amplification). Additionally, 8 of the 30 tumors (27%) harbored an H3.1 or H3.3 K27M mutation (6 of them with a concomitant EGFR alteration). All tumors tested showed loss of H3K27me3 staining, with evidence of overexpression of the EZH inhibitory protein (EZHIP) in the H3 wildtype cases. Although some tumors indeed showed a bithalamic growth pattern, a significant proportion of tumors occurred in the unilateral thalamus or in other (predominantly midline) locations. Conclusions: Our findings present a distinct molecular class of pediatric-type malignant gliomas largely overlapping with the recently reported bithalamic gliomas characterized by EGFR alteration, but additionally showing a broader spectrum of EGFR alterations and tumor localization. Global H3K27me3 loss in this group appears to be mediated by either H3 K27 mutation or EZHIP overexpression. EGFR inhibition may represent a potential therapeutic strategy in these highly aggressive gliomas

    Development of the SIOPE DIPG network, registry and imaging repository : a collaborative effort to optimize research into a rare and lethal disease

    Get PDF
    Diffuse intrinsic pontine glioma (DIPG) is a rare and deadly childhood malignancy. After 40 years of mostly single-center, often non-randomized trials with variable patient inclusions, there has been no improvement in survival. It is therefore time for international collaboration in DIPG research, to provide new hope for children, parents and medical professionals fighting DIPG. In a first step towards collaboration, in 2011, a network of biologists and clinicians working in the field of DIPG was established within the European Society for Paediatric Oncology (SIOPE) Brain Tumour Group: the SIOPE DIPG Network. By bringing together biomedical professionals and parents as patient representatives, several collaborative DIPG-related projects have been realized. With help from experts in the fields of information technology, and legal advisors, an international, web-based comprehensive database was developed, The SIOPE DIPG Registry and Imaging Repository, to centrally collect data of DIPG patients. As for April 2016, clinical data as well as MR-scans of 694 patients have been entered into the SIOPE DIPG Registry/Imaging Repository. The median progression free survival is 6.0 months (95% Confidence Interval (CI) 5.6-6.4 months) and the median overall survival is 11.0 months (95% CI 10.5-11.5 months). At two and five years post-diagnosis, 10 and 2% of patients are alive, respectively. The establishment of the SIOPE DIPG Network and SIOPE DIPG Registry means a paradigm shift towards collaborative research into DIPG. This is seen as an essential first step towards understanding the disease, improving care and (ultimately) cure for children with DIPG.Peer reviewe

    The international diffuse intrinsic pontine glioma registry: an infrastructure to accelerate collaborative research for an orphan disease

    Get PDF
    Diffuse intrinsic pontine glioma (DIPG), a rare, often fatal childhood brain tumor, remains a major therapeutic challenge. In 2012, investigators, funded by the DIPG Collaborative (a philanthropic partnership among 29 private foundations), launched the International DIPG Registry (IDIPGR) to advance understanding of DIPG. Comprised of comprehensive deidentified but linked clinical, imaging, histopathological, and genomic repositories, the IDIPGR uses standardized case report forms for uniform data collection; serial imaging and histopathology are centrally reviewed by IDIPGR neuro-radiologists and neuro-pathologists, respectively. Tissue and genomic data, and cell cultures derived from autopsies coordinated by the IDIPGR are available to investigators for studies approved by the Scientific Advisory Committee. From April 2012 to December 2016, 670 patients diagnosed with DIPG have been enrolled from 55 participating institutions in the US, Canada, Australia and New Zealand. The radiology repository contains 3558 studies from 448 patients. The pathology repository contains tissue on 81 patients with another 98 samples available for submission. Fresh DIPG tissue from seven autopsies has been sent to investigators to develop primary cell cultures. The bioinformatics repository contains next-generation sequencing data on 66 tumors. Nine projects using data/tissue from the IDIPGR by 13 principle investigators from around the world are now underway. The IDIPGR, a successful alliance among philanthropic agencies and investigators, has developed and maintained a highly collaborative, hypothesis-driven research infrastructure for interdisciplinary and translational projects in DIPG to improve diagnosis, response assessment, treatment and outcome for patients

    Integrated Genomics Identifies Five Medulloblastoma Subtypes with Distinct Genetic Profiles, Pathway Signatures and Clinicopathological Features

    Get PDF
    BACKGROUND: Medulloblastoma is the most common malignant brain tumor in children. Despite recent improvements in cure rates, prediction of disease outcome remains a major challenge and survivors suffer from serious therapy-related side-effects. Recent data showed that patients with WNT-activated tumors have a favorable prognosis, suggesting that these patients could be treated less intensively, thereby reducing the side-effects. This illustrates the potential benefits of a robust classification of medulloblastoma patients and a detailed knowledge of associated biological mechanisms. METHODS AND FINDINGS: To get a better insight into the molecular biology of medulloblastoma we established mRNA expression profiles of 62 medulloblastomas and analyzed 52 of them also by comparative genomic hybridization (CGH) arrays. Five molecular subtypes were identified, characterized by WNT signaling (A; 9 cases), SHH signaling (B; 15 cases), expression of neuronal differentiation genes (C and D; 16 and 11 cases, respectively) or photoreceptor genes (D and E; both 11 cases). Mutations in beta-catenin were identified in all 9 type A tumors, but not in any other tumor. PTCH1 mutations were exclusively identified in type B tumors. CGH analysis identified several fully or partly subtype-specific chromosomal aberrations. Monosomy of chromosome 6 occurred only in type A tumors, loss of 9q mostly occurred in type B tumors, whereas chromosome 17 aberrations, most common in medulloblastoma, were strongly associated with type C or D tumors. Loss of the inactivated X-chromosome was highly specific for female cases of type C, D and E tumors. Gene expression levels faithfully reflected the chromosomal copy number changes. Clinicopathological features significantly different between the 5 subtypes included metastatic disease and age at diagnosis and histology. Metastatic disease at diagnosis was significantly associated with subtypes C and D and most strongly with subtype E. Patients below 3 yrs of age had type B, D, or E tumors. Type B included most desmoplastic cases. We validated and confirmed the molecular subtypes and their associated clinicopathological features with expression data from a second independent series of 46 medulloblastomas. CONCLUSIONS: The new medulloblastoma classification presented in this study will greatly enhance the understanding of this heterogeneous disease. It will enable a better selection and evaluation of patients in clinical trials, and it will support the development of new molecular targeted therapies. Ultimately, our results may lead to more individualized therapies with improved cure rates and a better quality of life

    Infant High-Grade Gliomas Comprise Multiple Subgroups Characterized by Novel Targetable Gene Fusions and Favorable Outcomes.

    Get PDF
    Infant high-grade gliomas appear clinically distinct from their counterparts in older children, indicating that histopathologic grading may not accurately reflect the biology of these tumors. We have collected 241 cases under 4 years of age, and carried out histologic review, methylation profiling, and custom panel, genome, or exome sequencing. After excluding tumors representing other established entities or subgroups, we identified 130 cases to be part of an "intrinsic" spectrum of disease specific to the infant population. These included those with targetable MAPK alterations, and a large proportion of remaining cases harboring gene fusions targeting ALK (n = 31), NTRK1/2/3 (n = 21), ROS1 (n = 9), and MET (n = 4) as their driving alterations, with evidence of efficacy of targeted agents in the clinic. These data strongly support the concept that infant gliomas require a change in diagnostic practice and management. SIGNIFICANCE: Infant high-grade gliomas in the cerebral hemispheres comprise novel subgroups, with a prevalence of ALK, NTRK1/2/3, ROS1, or MET gene fusions. Kinase fusion-positive tumors have better outcome and respond to targeted therapy clinically. Other subgroups have poor outcome, with fusion-negative cases possibly representing an epigenetically driven pluripotent stem cell phenotype.See related commentary by Szulzewsky and Cimino, p. 904.This article is highlighted in the In This Issue feature, p. 890

    Clinical, Radiologic, Pathologic, and Molecular Characteristics of Long-Term Survivors of Diffuse Intrinsic Pontine Glioma (DIPG): A Collaborative Report From the International and European Society for Pediatric Oncology DIPG Registries.

    Get PDF
    Purpose Diffuse intrinsic pontine glioma (DIPG) is a brainstem malignancy with a median survival of 10 years (11% v 3% and 33% v 23%, respectively; P < .001) and with longer symptom duration ( P < .001). STSs, compared with LTSs, more commonly presented with cranial nerve palsy (83% v 73%, respectively; P = .008), ring enhancement (38% v 23%, respectively; P = .007), necrosis (42% v 26%, respectively; P = .009), and extrapontine extension (92% v 86%, respectively; P = .04). LTSs more commonly received systemic therapy at diagnosis (88% v 75% for STSs; P = .005). Biopsies and autopsies were performed in 299 patients (30%) and 77 patients (10%), respectively; 181 tumors (48%) were molecularly characterized. LTSs were more likely to harbor a HIST1H3B mutation (odds ratio, 1.28; 95% CI, 1.1 to 1.5; P = .002). Conclusion We report clinical, radiologic, and molecular factors that correlate with survival in children and young adults with DIPG, which are important for risk stratification in future clinical trials
    • …
    corecore