38 research outputs found
Note on the method of matched-asymptotic expansions for determining the force acting on a particle
This paper is an addendum to the article by Candelier, Mehaddi & Vauquelin
(2013) where the motion of a particle in a stratified fluid is investigated
theoretically, at small Reynolds and P\'eclet numbers. We review briefly the
method of matched asymptotic expansions which is generally used in order to
determine the force acting on a particle embedded in a given flow, in order to
account for small, but finite, inertia effects. As part of this method, we
present an alternative matching procedure, which is based on a series expansion
of the far-field solution of the problem, performed in the sense of generalized
functions. The way to perform such a series is presented succinctly and a
simple example is provided.Comment: 8 page
The history force on a small particle in a linearly stratified fluid
The hydrodynamic force experienced by a small spherical particle undergoing
an arbitrary time-dependent motion in a density-stratified fluid is
investigated theoretically. The study is carried out under the
Oberbeck-Boussinesq approximation, and in the limit of small Reynolds and small
P\'eclet numbers. The force acting on the particle is obtained by using matched
asymptotic expansions in which the small parameter is given by a/l where a is
the particle radius and l is the stratification length defined by Ardekani &
Stocker (2010), which depends on the Brunt-Vaisala frequency, on the fluid
kinematic viscosity and on the thermal or the concentration diffusivity
(depending on the case considered). The matching procedure used here, which is
based on series expansions of generalized functions, slightly differs from that
generally used in similar problems. In addition to the classical Stokes drag,
it is found the particle experiences a memory force given by two convolution
products, one of which involves, as usual, the particle acceleration and the
other one, the particle velocity. Owing to the stratification, the transient
behaviour of this memory force, in response to an abrupt motion, consists of an
initial fast decrease followed by a damped oscillation with an
angular-frequency corresponding to the Brunt-Vaisala frequency. The
perturbation force eventually tends to a constant which provides us with
correction terms that should be added to the Stokes drag to accurately predict
the settling time of a particle in a diffusive stratified-fluid.Comment: 16 page
Forward dynamics of continuum and soft robots: a strain parametrization based approach
soumis Ă IEEE TROIn this article we propose a new solution to the forward dynamics of Cosserat beams with in perspective, its application to continuum and soft robotics manipulation and locomotion. In contrast to usual approaches, it is based on the non-linear parametrization of the beam shape by its strain fields and their discretization on a functional basis of strain modes. While remaining geometrically exact, the approach provides a minimal set of ordinary differential equations in the usual Lagrange matrix form that can be solved with standard explicit time-integrators. Inspired from rigid robotics, the calculation of the matrices of the Lagrange model is performed with a continuous inverse Newton-Euler algorithm. The approach is tested on several numerical benches of non-linear structural statics, as well as further examples illustrating its capabilities for dynamics
Etude expérimentale d'un jet laminaire impactant une plaque plane chauffée
International audienceCe travail, de nature expérimentale, est consacré à l'étude d'un jet laminaire axisymétrique impactant une plaque plane horizontale chauffée et dont la température est maintenue fixe à l'aide d'un système d'asservissement. En particulier, nous nous intéressons au lieu de décollement de la couche limite cinématique et thermique du fluide et dont la distance à l'axe du jet traduit la compétition entre les effets d'inertie qui, dans les régimes d'écoulement considérés ici, sont stabilisateurs, puisqu'ils ont tendance à plaquer le fluide sur la paroi, et les effets de flottabilité, qui inversement ont tendance à déstabiliser l'écoulemen
Caractérisation de l'influence des instabilités de surface d'un film d'eau ruisselant sur le transfert de chaleur pariétal
Les films d'eau ruisselants sont utilisés dans un grand nombre d'applications industrielles. Ils permettent en impliquant une faible masse de fluide d'obtenir des transferts de chaleur importants. En général, ces films sont sujets à des instabilités de surface. Nous proposons ici une étude de l'influence de celles-ci sur le transfert convectif pariétal. Le problème est abordé numériquement en utilisant un maillage mobile épousant la forme de la surface libre. Une étude statistique nous permet de conclure sur l'importance des fluctuations de hauteur du film sur le flux pariétal transféré
Time-dependent lift and drag on a rigid body in a viscous steady linear flow
We compute the leading-order inertial corrections to the instantaneous force acting on a rigid body moving with a time-dependent slip velocity in a linear flow field, assuming that the square root of the Reynolds number based on the fluid-velocity gradient is much larger than the Reynolds number based on the slip velocity between the body and the fluid. As a first step towards applications to dilute sheared suspensions and turbulent particle-laden flows, we seek a formulation allowing this force to be determined for an arbitrarily shaped body moving in a general linear flow. We express the equations governing the flow disturbance in a non-orthogonal coordinate system moving with the undisturbed flow and solve the problem using matched asymptotic expansions. The use of the co-moving coordinates enables the leading-order inertial corrections to the force to be obtained at any time in an arbitrary linear flow field. We then specialize this approach to compute the time-dependent force components for a sphere moving in three canonical flows: solid-body rotation, planar elongation, and uniform shear. We discuss the behaviour and physical origin of the different force components in the short-time and quasi-steady limits. Last, we illustrate the influence of time-dependent and quasi-steady inertial effects by examining the sedimentation of prolate and oblate spheroids in a pure shear flow
Hauteur de fontaine retombantes
Une fontaine est un jet dont la flottabilité agit dans le sens inverse de sa quantité de mouvement. Ce type d’écoulement se rencontre dans divers processus industriels (dispersion atmosphérique, rejets de polluant dans la mer, etc) et environnementaux (cumulonimbus, fumeur noir, éruptions volcaniques, etc). La configuration à laquelle nous nous intéressons est celle d’un rejet lourd vertical dans un milieu de masse volumique homogène. La hauteur du rejet évolue durant sa phase transitoire d’une hauteur maximale vers une hauteur stabilisée atteinte en régime établi. Turner (JFM 1966) a montré que pour de grandes valeurs du nombre de Froude à l’injection, le rapport entre la hauteur finale et la hauteur stabilisée est constant et vaut lambda = 1,43. Des travaux récents contredisent cette valeur pour de faibles nombres de Froude. Dans ce travail, nous établissons à partir du ”confined top-hat model” de Carazzo, Kaminski et Tait (JFM 2010) une équation différentielle régissant la hauteur stabilisée de la fontaine. Une solution rapprochée de cette équation est proposée et permet d’obtenir la dépendance du rapport avec le nombre de Froude. Enfin, une comparaison est faite avec les résultats expérimentaux de Burridge et Hunt (JFM 2012). Un bon accord est constaté, en tout cas pour Fr > 1