154 research outputs found

    The processing and impact of dissolved riverine nitrogen in the Arctic Ocean

    Get PDF
    © The Author(s), 2011. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Estuaries and Coasts 35 (2012): 401-415, doi:10.1007/s12237-011-9417-3.Although the Arctic Ocean is the most riverine-influenced of all of the world’s oceans, the importance of terrigenous nutrients in this environment is poorly understood. This study couples estimates of circumpolar riverine nutrient fluxes from the PARTNERS (Pan-Arctic River Transport of Nutrients, Organic Matter, and Suspended Sediments) Project with a regionally configured version of the MIT general circulation model to develop estimates of the distribution and availability of dissolved riverine N in the Arctic Ocean, assess its importance for primary production, and compare these estimates to potential bacterial production fueled by riverine C. Because riverine dissolved organic nitrogen is remineralized slowly, riverine N is available for uptake well into the open ocean. Despite this, we estimate that even when recycling is considered, riverine N may support 0.5–1.5 Tmol C year−1 of primary production, a small proportion of total Arctic Ocean photosynthesis. Rapid uptake of dissolved inorganic nitrogen coupled with relatively high rates of dissolved organic nitrogen regeneration in N-limited nearshore regions, however, leads to potential localized rates of riverine-supported photosynthesis that represent a substantial proportion of nearshore production.Funding for this work was provided through NSFOPP- 0229302 and NSF-OPP-0732985.Support to SET was additionally provided by an NSERC Postdoctoral Fellowship

    Dissolved organic carbon transformations and microbial community response to variations in recharge waters in a shallow carbonate aquifer

    Get PDF
    © 2016, The Author(s). In carbonate aquifers, dissolved organic carbon from the surface drives heterotrophic metabolism, generating CO2 in the subsurface. Although this has been a proposed mechanism for enhanced dissolution at the water table, respiration rates and their controlling factors have not been widely evaluated. This study investigates the composition and concentration of dissolved organic carbon (DOC) reaching the water table from different recharge pathways on a subtropical carbonate island using a combination of DOC concentration measurements, fluorescence and absorption characterisation. In addition, direct measurements of the microbial response to the differing water types were made. Interactions of rainfall with the vegetation, via throughfall and stemflow, increase the concentration of DOC. The highest DOC concentrations are associated with stemflow, overland recharge and dissolution hole waters which interact with bark lignin and exhibit strong terrestrial-derived characteristics. The groundwater samples exhibit the lowest concentrations of DOC and are comprised of refractory humic-like organic matter. The heterotrophic response seems to be controlled by the concentration of DOC in the sample. The terrestrially sourced humic-like matter in the stemflow and dissolution hole samples was highly labile, thus increasing the amount of biologically produced CO2 to drive dissolution. Based on the calculated respiration rates, microbial activity could enhance carbonate dissolution, increasing porosity generation by a maximum of 1%kyr−1 at the top of the freshwater lens

    Dust inputs and bacteria influence dissolved organic matter in clear alpine lakes

    Get PDF
    Remote lakes are usually unaffected by direct human influence, yet they receive inputs of atmospheric pollutants, dust, and other aerosols, both inorganic and organic. In remote, alpine lakes, these atmospheric inputs may influence the pool of dissolved organic matter, a critical constituent for the biogeochemical functioning of aquatic ecosystems. Here, to assess this influence, we evaluate factors related to aerosol deposition, climate, catchment properties, and microbial constituents in a global dataset of 86 alpine and polar lakes. We show significant latitudinal trends in dissolved organic matter quantity and quality, and uncover new evidence that this geographic pattern is influenced by dust deposition, flux of incident ultraviolet radiation, and bacterial processing. Our results suggest that changes in land use and climate that result in increasing dust flux, ultraviolet radiation, and air temperature may act to shift the optical quality of dissolved organic matter in clear, alpine lakes

    Microbial Activities and Dissolved Organic Matter Dynamics in Oil-Contaminated Surface Seawater from the Deepwater Horizon Oil Spill Site

    Get PDF
    The Deepwater Horizon oil spill triggered a complex cascade of microbial responses that reshaped the dynamics of heterotrophic carbon degradation and the turnover of dissolved organic carbon (DOC) in oil contaminated waters. Our results from 21-day laboratory incubations in rotating glass bottles (roller bottles) demonstrate that microbial dynamics and carbon flux in oil-contaminated surface water sampled near the spill site two weeks after the onset of the blowout were greatly affected by activities of microbes associated with macroscopic oil aggregates. Roller bottles with oil-amended water showed rapid formation of oil aggregates that were similar in size and appearance compared to oil aggregates observed in surface waters near the spill site. Oil aggregates that formed in roller bottles were densely colonized by heterotrophic bacteria, exhibiting high rates of enzymatic activity (lipase hydrolysis) indicative of oil degradation. Ambient waters surrounding aggregates also showed enhanced microbial activities not directly associated with primary oil-degradation (β-glucosidase; peptidase), as well as a twofold increase in DOC. Concurrent changes in fluorescence properties of colored dissolved organic matter (CDOM) suggest an increase in oil-derived, aromatic hydrocarbons in the DOC pool. Thus our data indicate that oil aggregates mediate, by two distinct mechanisms, the transfer of hydrocarbons to the deep sea: a microbially-derived flux of oil-derived DOC from sinking oil aggregates into the ambient water column, and rapid sedimentation of the oil aggregates themselves, serving as vehicles for oily particulate matter as well as oil aggregate-associated microbial communities

    Antarctic sea ice region as a source of biogenic organic nitrogen in aerosols

    Get PDF
    Dall'Osto, Manuel ... et al.-- 10 pages, 5 figuresClimate warming affects the development and distribution of sea ice, but at present the evidence of polar ecosystem feedbacks on climate through changes in the atmosphere is sparse. By means of synergistic atmospheric and oceanic measurements in the Southern Ocean near Antarctica, we present evidence that the microbiota of sea ice and sea ice-influenced ocean are a previously unknown significant source of atmospheric organic nitrogen, including low molecular weight alkyl-amines. Given the keystone role of nitrogen compounds in aerosol formation, growth and neutralization, our findings call for greater chemical and source diversity in the modelling efforts linking the marine ecosystem to aerosol-mediated climate effects in the Southern OceanThe cruise was funded by the Spanish Ministry of Economy through projects PEGASO (CTM2012-37615) and Bio-Nuc (CGL2013-49020-R), and by the EU though the FP7-PEOPLE-2013-IOF programme (Project number 624680, MANU – Marine Aerosol NUcleations). [...] The NUI Galway and ISAC-CNR Bologna groups acknowledge funding from the European Union’s Seventh Framework Programme (FP7/2007-2013) project BACCHUS under grant agreement n° 603445. The work was further supported by the CNR (Italy) under AirSEaLab: Progetto Laboratori Congiunti. The National Centre for Atmospheric Science NCAS Birmingham group is funded by the UK Natural Environment Research Council. [...] CC, MFF and RA acknowledge funding from the Marine Institute, University of Plymouth to enable participation in PEGASOPeer Reviewe

    The changing carbon cycle of the coastal ocean

    Get PDF
    The carbon cycle of the coastal ocean is a dynamic component of the global carbon budget. But the diverse sources and sinks of carbon and their complex interactions in these waters remain poorly understood. Here we discuss the sources, exchanges and fates of carbon in the coastal ocean and how anthropogenic activities have altered the carbon cycle. Recent evidence suggests that the coastal ocean may have become a net sink for atmospheric carbon dioxide during post-industrial times. Continued human pressures in coastal zones will probably have an important impact on the future evolution of the coastal ocean's carbon budget

    Tracking down carbon inputs underground from an arid zone Australian calcrete.

    Get PDF
    Freshwater ecosystems play a key role in shaping the global carbon cycle and maintaining the ecological balance that sustains biodiversity worldwide. Surficial water bodies are often interconnected with groundwater, forming a physical continuum, and their interaction has been reported as a crucial driver for organic matter (OM) inputs in groundwater systems. However, despite the growing concerns related to increasing anthropogenic pressure and effects of global change to groundwater environments, our understanding of the dynamics regulating subterranean carbon flows is still sparse. We traced carbon composition and transformations in an arid zone calcrete aquifer using a novel multidisciplinary approach that combined isotopic analyses of dissolved organic carbon (DOC) and inorganic carbon (DIC) (δ13CDOC, δ13CDIC, 14CDOC and 14CDIC) with fluorescence spectroscopy (Chromophoric Dissolved OM (CDOM) characterisation) and metabarcoding analyses (taxonomic and functional genomics on bacterial 16S rRNA). To compare dynamics linked to potential aquifer recharge processes, water samples were collected from two boreholes under contrasting rainfall: low rainfall ((LR), dry season) and high rainfall ((HR), wet season). Our isotopic results indicate limited changes and dominance of modern terrestrial carbon in the upper part (northeast) of the bore field, but correlation between HR and increased old and 13C-enriched DOC in the lower area (southwest). CDOM results show a shift from terrestrially to microbially derived compounds after rainfall in the same lower field bore, which was also sampled for microbial genetics. Functional genomic results showed increased genes coding for degradative pathways-dominated by those related to aromatic compound metabolisms-during HR. Our results indicate that rainfall leads to different responses in different parts of the bore field, with an increase in old carbon sources and microbial processing in the lower part of the field. We hypothesise that this may be due to increasing salinity, either due to mobilisation of Cl- from the soil, or infiltration from the downstream salt lake during HR. This study is the first to use a multi-technique assessment using stable and radioactive isotopes together with functional genomics to probe the principal organic biogeochemical pathways regulating an arid zone calcrete system. Further investigations involving extensive sampling from diverse groundwater ecosystems will allow better understanding of the microbiological pathways sustaining the ecological functioning of subterranean biota

    Monitoring biological wastewater treatment processes: Recent advances in spectroscopy applications

    Get PDF
    Biological processes based on aerobic and anaerobic technologies have been continuously developed to wastewater treatment and are currently routinely employed to reduce the contaminants discharge levels in the environment. However, most methodologies commonly applied for monitoring key parameters are labor intensive, time-consuming and just provide a snapshot of the process. Thus, spectroscopy applications in biological processes are, nowadays, considered a rapid and effective alternative technology for real-time monitoring though still lacking implementation in full-scale plants. In this review, the application of spectroscopic techniques to aerobic and anaerobic systems is addressed focusing on UV--Vis, infrared, and fluorescence spectroscopy. Furthermore, chemometric techniques, valuable tools to extract the relevant data, are also referred. To that effect, a detailed analysis is performed for aerobic and anaerobic systems to summarize the findings that have been obtained since 2000. Future prospects for the application of spectroscopic techniques in biological wastewater treatment processes are further discussed.The authors thank the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, COMPETE 2020 (POCI-01-0145-FEDER-006684) and the project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020 - Programa Operacional Regional do Norte. The authors also acknowledge the financial support to Daniela P. Mesquita and Cristina Quintelas through the postdoctoral Grants (SFRH/BPD/82558/2011 and SFRH/BPD/101338/2014) provided by FCT - Portugal.info:eu-repo/semantics/publishedVersio
    corecore