104 research outputs found

    Melting of regular and decoupled vortex lattices in BSCCO crystals

    Full text link
    The angular dependence of the first-order phase transition (FOT) in the vortex lattice in Bi2_{2}Sr2_{2}CaCu2_{2}O8_{8} crystals was investigated by a low frequency AC shielding technique (with the AC field ∥c\parallel c), in which the static-field component parallel to cc- (H⊥H_{\perp}) was varied with the in-plane field H∥H_{\parallel} held constant. The linear decrease of the FOT field H⊥FOTH_{\perp}^{FOT} with increasing H∥H_{\parallel} ends at a temperature--dependent critical value of H∥H_{\parallel}. A new transition, marked by the abrupt drop of the abab-plane shielding current, appears at this point. We draw a new phase diagram with H∥H_{\parallel} and H⊥H_{\perp} field components as coordinates; this features at least two distinct regions in the vortex solid phase, that are determined by the different interplay between the pancake vortex-- and Josephson vortex lattice.Comment: 2 pages, 2 figures Paper submitted to the conference proceedings of M2S-2000 Houston, T

    Supercooling of the high field vortex phase in single crystalline BSCCO

    Full text link
    Time resolved magneto-optical images show hysteresis associated with the transition at the so-called ``second magnetization peak'' at B_sp in single-crystalline Bi_2Sr_2CaCu_2O_8+d. By rapid quenching of the high-field phase, it can be made to persist metastably in the sample down to fields that are nearly half B_sp.Comment: 2 pages, 2 figures Submitted to the conference proceedings of M2S-VI, February 200, Housto

    Ferromagnetic domain structure of La0.78Ca0.22MnO3 single crystals

    Get PDF
    The magneto-optical technique has been employed to observe spontaneous ferromagnetic domain structures in La0.78Ca0.22MnO3 single crystals. The magnetic domain topology was found to be correlated with the intrinsic twin structure of the investigated crystals. With decreasing temperature the regular network of ferromagnetic domains undergoes significant changes resulting in apparent rotation of the domain walls in the temperature range of 70–150 K. The apparent rotation of the domain walls can be understood in terms of the Jahn-Teller deformation of the orthorhombic unit cell, accompanied by additional twinning

    Vortex liquid correlations induced by in-plane field in underdoped Bi2Sr2CaCu2O8+d

    Full text link
    By measuring the Josephson Plasma Resonance, we have probed the influence of an in-plane magnetic field on the pancake vortex correlations along the c-axis in heavily underdoped Bi2Sr2CaCu2O8+d (Tc = 72.4 +/- 0.6 K) single crystals both in the vortex liquid and in the vortex solid phase. Whereas the in-plane field enhances the interlayer phase coherence in the liquid state close to the melting line, it slightly depresses it in the solid state. This is interpreted as the result of an attractive force between pancake vortices and Josephson vortices, apparently also present in the vortex liquid state. The results unveil a boundary between a correlated vortex liquid in which pancakes adapt to Josephson vortices, and the usual homogeneous liquid.Comment: 2 pages, submitted to the Proceedings of M2S HTSC VIII Dresde

    Vortex Solid-Liquid Transition in Bi2_{2}Sr2_{2}CaCu2_{2}O8+δ_{8+\delta} with a High Density of Strong Pins

    Full text link
    The introduction of a large density of columnar defects in %underdoped Bi2_{2}Sr2_{2}CaCu2_{2}O8+δ_{8+\delta} crystals does not, at sufficiently low vortex densities, increase the irreversibility line beyond the first order transition (FOT) field of pristine crystals. At such low fields, the flux line wandering length rwr_{w} behaves as in pristine %Bi2_{2}Sr2_{2}CaCu2_{2}O8+δ_{8+\delta} crystals. Next, vortex positional correlations along the cc--axis in the vortex Bose glass at fields above the FOT are smaller than in the low--field vortex solid. Third, the Bose-glass-to-vortex liquid transition is signaled by a rapid decrease in c-axis phase correlations. These observations are understood in terms of the ``discrete superconductor'' model.Comment: 4 pages, 4 figures Submitted to Phys. Rev. B Rapid Comm. 16-1-2004 Revised version 18-3-200

    Magnetization Decay due to Vortex Phase Boundary Motion in BSCCO

    Full text link
    We identify a new regime of decay of the irreversible magnetization in clean Bi2_{2}Sr2_{2}CaCu2_{2}O8_{8} crystals, at induction values close to the ``second peak field'' at which the bulk critical current density steeply increases. A time window is identified during which the decay of the induction is controlled by the slow propagation of the phase transformation front across the sample.Comment: 2 pages, 3 figures Paper submitted to the conference proceedings of M2S-2000 Houston T

    Magnetic relaxation in the "Bragg-glass" phase in BSCCO

    Full text link
    Magnetic relaxation in the Bragg-glass phase of overdoped Bi_2Sr_2CaCu_2O_8 crystals was investigated using time-resolved magneto-optical visualisation of the flux distribution. This has permitted us to extract the current-voltage characteristic, which can be well described by a power-law, although fits to a stretched exponential E \sim \exp(- j_{c} / j)^{\mu} with 0.3 < \mu < 0.8 are possible at long times in excess of 100 s.Comment: 2 pages, 3 figures submitted to conference proceedings of M2S-2000 Houston T

    Dissipation in highly anisotropic superconductors

    Get PDF
    Quantum Matter and Optic

    Role of pair-breaking and phase fluctuations in c-axis tunneling in underdoped Bi2_{2}Sr2_{2}CaCu2_{2}O8+δ_{8+\delta}

    Full text link
    The Josephson Plasma Resonance is used to study the c-axis supercurrent in the superconducting state of underdoped Bi2_{2}Sr2_{2}CaCu2_{2}O8+δ_{8+\delta} with varying degrees of controlled point-like disorder, introduced by high-energy electron irradiation. As disorder is increased, the Josephson Plasma frequency decreases proportionally to the critical temperature. The temperature dependence of the plasma frequency does not depend on the irradiation dose, and is in quantitative agreement with a model for quantum fluctuations of the superconducting phase in the CuO2_{2} layers.Comment: 2 pages, submitted to the Proceedings of M2S-HTSC VIII Dresde
    • …
    corecore