278 research outputs found

    Planar Josephson Tunnel Junctions in a Transverse Magnetic Field

    Get PDF
    Traditionally, since the discovery of the Josephson effect in 1962, the magnetic diffraction pattern of planar Josephson tunnel junctions has been recorded with the field applied in the plane of the junction. Here we discuss the static junction properties in a transverse magnetic field where demagnetization effects imposed by the junction geometry and configuration of the electrodes are important. Measurements of the critical current versus magnetic field in planar Nb-based high-quality junctions with different geometry, size and critical current density show that it is advantageous to use a transverse magnetic field rather than an in-plane field to suppress the Josephson tunnel current and Fiske resonances in practical applications.Comment: 5 pages, 2 figures, submitted to Journal of Applied Physic

    Characterisation of HTSC ceramics from their resistive transition

    Full text link
    The resistivity vs. temperature relation in bulk ceramic HTSC under self-field conditions as well as in weak external magnetic fields is modelled by local Lorentz force induced fluxon motion with temperature dependent pinning. A pinning force density and two viscous drag coefficients in intergrain and intragrain regions, respectively, can be used as characteristic parameters describing the temperature, current, and external field dependences of the sample resistance.Comment: 12 pages, LaTeX2e, 6 figures (epsfig), to be published in Supercond. Sci. and Techno

    Adiabatic Magnetization of Superconductors as a High-Performance Cooling Mechanism

    Get PDF
    The adiabatic magnetization of a superconductor is a cooling principle proposed in the 30s, which has never been exploited up to now. Here we present a detailed dynamic description of the effect, computing the achievable final temperatures as well as the process timescales for different superconductors in various regimes. We show that, although in the experimental conditions explored so far the method is in fact inefficient, a suitable choice of initial temperatures and metals can lead to unexpectedly large cooling effect, even in the presence of dissipative phenomena. Our results suggest that this principle can be re-envisaged today as a performing refrigeration method to access the microK regime in nanodevices.Comment: 4 pages, 3 color figure

    The role of temperature in the magnetic irreversibility of type-I Pb superconductors

    Full text link
    Evidence of how temperature takes part in the magnetic irreversibility in the intermediate state of a cylinder and various disks of pure type-I superconducting lead is presented. Isothermal measurements of first magnetization curves and magnetic hysteresis cycles are analyzed in a reduced representation that defines an equilibrium state for flux penetration in all the samples and reveals that flux expulsion depends on temperature in the disks but not in the cylinder. The magnetic field at which irreversibility sets in along the descending branch of the hysteresis cycle and the remnant magnetization at zero field are found to decrease with temperature in the disks. The contributions to irreversibility of the geometrical barrier and the energy minima associated to stress defects that act as pinning centers on normal-superconductor interfaces are discussed. The differences observed among the disks are ascribed to the diverse nature of the stress defects in each sample. The pinning barriers are suggested to decrease with the magnetic field to account for these results

    Universal restrictions to the conversion of heat into work derived from the analysis of the Nernst theorem as a uniform limit

    Full text link
    We revisit the relationship between the Nernst theorem and the Kelvin-Planck statement of the second law. We propose that the exchange of entropy uniformly vanishes as the temperature goes to zero. The analysis of this assumption shows that is equivalent to the fact that the compensation of a Carnot engine scales with the absorbed heat so that the Nernst theorem should be embedded in the statement of the second law. ----- Se analiza la relaci{\'o}n entre el teorema de Nernst y el enunciado de Kelvin-Planck del segundo principio de la termodin{\'a}mica. Se{\~n}alamos el hecho de que el cambio de entrop{\'\i}a tiende uniformemente a cero cuando la temperatura tiende a cero. El an{\'a}lisis de esta hip{\'o}tesis muestra que es equivalente al hecho de que la compensaci{\'o}n de una m{\'a}quina de Carnot escala con el calor absorbido del foco caliente, de forma que el teorema de Nernst puede derivarse del enunciado del segundo principio.Comment: 8pp, 4 ff. Original in english. Also available translation into spanish. Twocolumn format. RevTe

    Performance of discrete heat engines and heat pumps in finite time

    Get PDF
    The performance in finite time of a discrete heat engine with internal friction is analyzed. The working fluid of the engine is composed of an ensemble of noninteracting two level systems. External work is applied by changing the external field and thus the internal energy levels. The friction induces a minimal cycle time. The power output of the engine is optimized with respect to time allocation between the contact time with the hot and cold baths as well as the adiabats. The engine's performance is also optimized with respect to the external fields. By reversing the cycle of operation a heat pump is constructed. The performance of the engine as a heat pump is also optimized. By varying the time allocation between the adiabats and the contact time with the reservoir a universal behavior can be identified. The optimal performance of the engine when the cold bath is approaching absolute zero is studied. It is found that the optimal cooling rate converges linearly to zero when the temperature approaches absolute zero.Comment: 45 pages LaTeX, 25 eps figure

    Anatomy of point-contact Andreev reflection spectroscopy from the experimental point of view (review)

    Get PDF
    We review application of point-contact Andreev-reflection spectroscopy to study elemental superconductors, where theoretical conditions for the smallness of the point-contact size with respect to the characteristic lengths in the superconductor can be satisfied. We discuss existing theoretical models and identify new issues that have to be solved, especially when applying this method to investigate more complex superconductors. We will also demonstrate that some aspects of point-contact Andreev-reflection spectroscopy still need to be addressed even when investigating ordinary metals.Comment: 20 pages, 18 figs. V2: Ref.60 and footnote 3 are added, a number of minor fixe

    Notes on the Third Law of Thermodynamics.I

    Get PDF
    We analyze some aspects of the third law of thermodynamics. We first review both the entropic version (N) and the unattainability version (U) and the relation occurring between them. Then, we heuristically interpret (N) as a continuity boundary condition for thermodynamics at the boundary T=0 of the thermodynamic domain. On a rigorous mathematical footing, we discuss the third law both in Carath\'eodory's approach and in Gibbs' one. Carath\'eodory's approach is fundamental in order to understand the nature of the surface T=0. In fact, in this approach, under suitable mathematical conditions, T=0 appears as a leaf of the foliation of the thermodynamic manifold associated with the non-singular integrable Pfaffian form δQrev\delta Q_{rev}. Being a leaf, it cannot intersect any other leaf S=S= const. of the foliation. We show that (N) is equivalent to the requirement that T=0 is a leaf. In Gibbs' approach, the peculiar nature of T=0 appears to be less evident because the existence of the entropy is a postulate; nevertheless, it is still possible to conclude that the lowest value of the entropy has to belong to the boundary of the convex set where the function is defined.Comment: 29 pages, 2 figures; RevTex fil

    The Human Ecology and Geography of Burning in an Unstable Savanna Environment

    Get PDF
    According to new ecological theories, many savannas are inherently in disequilibrium and can flip from tree-dominated to grass-dominated landscapes depending upon the disturbance regime. In particular, a shift in a fire regime to a more frequent and intensive one can radically alter the tree-to-grass ratio in a given savanna. Drawing upon the ecological buffering model we argue that savanna persistence requires a relatively stable fire regime. We hypothesize that anthropogenic burning practices perform this function by producing a regular annual spatiotemporal pattern of fire that is linked to vegetation type. We test this hypothesis using a study of two areas, one in Mali and the other Burkina Faso. We use two sources of satellite data to produce an 11-year time series of the spatiotemporal pattern of fires and an example of the annual burned area pattern these fires produce. We combine the analysis of satellite imagery with interviews of rural inhabitants who set fires to understand the logic underlying the patterns of fire. Analysis of a time series of imagery reveals a strikingly regular annual spatiotemporal pattern of burning for both study areas, which cannot be explained by the regional climatic pattern alone. We conclude that the regularity of the annual fire regime in West Africa is a human-ecological phenomenon closely linked to vegetation type and controlled by people\u27s burning practices. We argue that the anthropogenic burning regime serves to buffer the savanna and maintain its ecological stability
    corecore