research

The role of temperature in the magnetic irreversibility of type-I Pb superconductors

Abstract

Evidence of how temperature takes part in the magnetic irreversibility in the intermediate state of a cylinder and various disks of pure type-I superconducting lead is presented. Isothermal measurements of first magnetization curves and magnetic hysteresis cycles are analyzed in a reduced representation that defines an equilibrium state for flux penetration in all the samples and reveals that flux expulsion depends on temperature in the disks but not in the cylinder. The magnetic field at which irreversibility sets in along the descending branch of the hysteresis cycle and the remnant magnetization at zero field are found to decrease with temperature in the disks. The contributions to irreversibility of the geometrical barrier and the energy minima associated to stress defects that act as pinning centers on normal-superconductor interfaces are discussed. The differences observed among the disks are ascribed to the diverse nature of the stress defects in each sample. The pinning barriers are suggested to decrease with the magnetic field to account for these results

    Similar works

    Full text

    thumbnail-image

    Available Versions