199 research outputs found

    Frost Heaving of Container Hardwood Seedlings Planted in an Abandoned Agriculitural Field in Sharkey County, Mississippi

    Get PDF
    The use of container hardwood seedlings is an alternative to bareroot planting stock. In January 1996, 1,485 container seedlings of Nuttall oak (Quercus nuttallii Palmer), willow oak (Q. phellos L.). overcup oak (Q. lyrata Walter), and water oak (Q. nigra L.) were planted in Sharkey clay on an abandoned agricultural field situated in the Lower Mississippi River Alluvial Valley. Beginning with the passage of a cold front on January 31, daily minimum temperatures dipped as low as 6 °F. For 5 days, dally high temperatures did not climb above 32 °F. This cold period caused 33.7 percent of all seedlings to frost heave and an overall survival of 0.5 percent. Our observations suggest that container seedlings should not be planted on shrink-swell clay soils until after the threat of hard freezing has passed. Seedling root morphology combined with soil conditions at the time of planting may have contributed to the frost heaving

    In vitro fusion of single synaptic and dense core vesicles reproduces key physiological properties.

    No full text
    Regulated exocytosis of synaptic vesicles is substantially faster than of endocrine dense core vesicles despite similar molecular machineries. The reasons for this difference are unknown and could be due to different regulatory proteins, different spatial arrangements, different vesicle sizes, or other factors. To address these questions, we take a reconstitution approach and compare regulated SNARE-mediated fusion of purified synaptic and dense core chromaffin and insulin vesicles using a single vesicle-supported membrane fusion assay. In all cases, Munc18 and complexin are required to restrict fusion in the absence of calcium. Calcium triggers fusion of all docked vesicles. Munc13 (C1C2MUN domain) is required for synaptic and enhanced insulin vesicle fusion, but not for chromaffin vesicles, correlating inversely with the presence of CAPS protein on purified vesicles. Striking disparities in calcium-triggered fusion rates are observed, increasing with curvature with time constants 0.23 s (synaptic vesicles), 3.3 s (chromaffin vesicles), and 9.1 s (insulin vesicles) and correlating with rate differences in cells

    Rab3D is critical for secretory granule maturation in PC12 cells.

    Get PDF
    Neuropeptide- and hormone-containing secretory granules (SGs) are synthesized at the trans-Golgi network (TGN) as immature secretory granules (ISGs) and complete their maturation in the F-actin-rich cell cortex. This maturation process is characterized by acidification-dependent processing of cargo proteins, condensation of the SG matrix and removal of membrane and proteins not destined to mature secretory granules (MSGs). Here we addressed a potential role of Rab3 isoforms in these maturation steps by expressing their nucleotide-binding deficient mutants in PC12 cells. Our data show that the presence of Rab3D(N135I) decreases the restriction of maturing SGs to the F-actin-rich cell cortex, blocks the removal of the endoprotease furin from SGs and impedes the processing of the luminal SG protein secretogranin II. This strongly suggests that Rab3D is implicated in the subcellular localization and maturation of ISGs

    Transition to the new race/ethnicity data collection standards in the Department of Veterans Affairs

    Get PDF
    BACKGROUND: Patient race in the Department of Veterans Affairs (VA) information system was previously recorded based on an administrative or clinical employee's observation. Since 2003, the VA started to collect self-reported race in compliance with a new federal guideline. We investigated the implications of this transition for using race/ethnicity data in multi-year trends in the VA and in other healthcare data systems that make the transition. METHODS: All unique users of VA healthcare services with self-reported race/ethnicity data in 2004 were compared with their prior observer-recorded race/ethnicity data from 1997 – 2002 (N = 988,277). RESULTS: In 2004, only about 39% of all VA healthcare users reported race/ethnicity values other than "unknown" or "declined." Females reported race/ethnicity at a lower rate than males (27% vs. 40%; p < 0.001). Over 95% of observer-recorded data agreed with self-reported data. Compared with the patient self-reported data, the observer-recorded White and African American races were accurate for 98% (kappa = 0.89) and 94% (kappa = 0.93) individuals, respectively. Accuracy of observer-recorded races was much worse for other minority groups with kappa coefficients ranging between 0.38 for American Indian or Alaskan Natives and 0.79 for Hispanic Whites. When observer-recorded race/ethnicity values were reclassified into non-African American groups, they agreed with the self-reported data for 98% of all individuals (kappa = 0.93). CONCLUSION: For overall VA healthcare users, the agreement between observer-recorded and self-reported race/ethnicity was excellent and observer-recorded and self-reported data can be used together for multi-year trends without creating serious bias. However, this study also showed that observation was not a reliable method of race/ethnicity data collection for non-African American minorities and racial disparity might be underestimated if observer-recorded data are used due to systematic patterns of inaccurate race/ethnicity assignments

    Dual Use of Veterans Health Administration and Indian Health Service: Healthcare Provider and Patient Perspectives

    Get PDF
    Many American Indian and Alaska Native veterans are eligible for healthcare from Veterans Health Administration (VHA) and from Indian Health Service (IHS). These organizations executed a Memorandum of Understanding in 2003 to share resources, but little was known about how they collaborated to deliver healthcare. To describe dual use from the stakeholders’ perspectives, including incentives that encourage cross-use, which organization’s primary care is “primary,” and the potential problems and opportunities for care coordination across VHA and IHS. VHA healthcare staff, IHS healthcare staff and American Indian and Alaska Native veterans. Focus groups were conducted using a semi-structured guide. A software-assisted text analysis was performed using grounded theory to develop analytic categories. Dual use was driven by variation in institutional resources, leading patients to actively manage health-seeking behaviors and IHS providers to make ad hoc recommendations for veterans to seek care at VHA. IHS was the “primary” primary care for dual users. There was little coordination between VHA and IHS resulting in delays and treatment conflicts, but all stakeholder groups welcomed future collaboration. Fostering closer alignment between VHA and IHS would reduce care fragmentation and improve accountability for patient care

    Nucleotide Binding Switches the Information Flow in Ras GTPases

    Get PDF
    The Ras superfamily comprises many guanine nucleotide-binding proteins (G proteins) that are essential to intracellular signal transduction. The guanine nucleotide-dependent intrinsic flexibility patterns of five G proteins were investigated in atomic detail through Molecular Dynamics simulations of the GDP- and GTP-bound states (SGDP and SGTP, respectively). For all the considered systems, the intrinsic flexibility of SGDP was higher than that of SGTP, suggesting that Guanine Exchange Factor (GEF) recognition and nucleotide switch require higher amplitude motions than effector recognition or GTP hydrolysis. Functional mode, dynamic domain, and interaction energy correlation analyses highlighted significant differences in the dynamics of small G proteins and Gα proteins, especially in the inactive state. Indeed, SGDP of Gαt, is characterized by a more extensive energy coupling between nucleotide binding site and distal regions involved in GEF recognition compared to small G proteins, which attenuates in the active state. Moreover, mechanically distinct domains implicated in nucleotide switch could be detected in the presence of GDP but not in the presence of GTP. Finally, in small G proteins, functional modes are more detectable in the inactive state than in the active one and involve changes in solvent exposure of two highly conserved amino acids in switches I and II involved in GEF recognition. The average solvent exposure of these amino acids correlates in turn with the rate of GDP release, suggesting for them either direct or indirect roles in the process of nucleotide switch. Collectively, nucleotide binding changes the information flow through the conserved Ras-like domain, where GDP enhances the flexibility of mechanically distinct portions involved in nucleotide switch, and favors long distance allosteric communication (in Gα proteins), compared to GTP

    Munc18-1 binding to the neuronal SNARE complex controls synaptic vesicle priming

    Get PDF
    Munc18-1 and soluble NSF attachment protein receptors (SNAREs) are critical for synaptic vesicle fusion. Munc18-1 binds to the SNARE syntaxin-1 folded into a closed conformation and to SNARE complexes containing open syntaxin-1. Understanding which steps in fusion depend on the latter interaction and whether Munc18-1 competes with other factors such as complexins for SNARE complex binding is critical to elucidate the mechanisms involved. In this study, we show that lentiviral expression of Munc18-1 rescues abrogation of release in Munc18-1 knockout mice. We describe point mutations in Munc18-1 that preserve tight binding to closed syntaxin-1 but markedly disrupt Munc18-1 binding to SNARE complexes containing open syntaxin-1. Lentiviral rescue experiments reveal that such disruption selectively impairs synaptic vesicle priming but not Ca2+-triggered fusion of primed vesicles. We also find that Munc18-1 and complexin-1 bind simultaneously to SNARE complexes. These results suggest that Munc18-1 binding to SNARE complexes mediates synaptic vesicle priming and that the resulting primed state involves a Munc18-1–SNARE–complexin macromolecular assembly that is poised for Ca2+ triggering of fusion

    Key Role of Polyphosphoinositides in Dynamics of Fusogenic Nuclear Membrane Vesicles

    Get PDF
    The role of phosphoinositides has been thoroughly described in many signalling and membrane trafficking events but their function as modulators of membrane structure and dynamics in membrane fusion has not been investigated. We have reconstructed models that mimic the composition of nuclear envelope precursor membranes with naturally elevated amounts of phosphoinositides. These fusogenic membranes (membrane vesicle 1(MV1) and nuclear envelope remnants (NER) are critical for the assembly of the nuclear envelope. Phospholipids, cholesterol, and polyphosphoinositides, with polyunsaturated fatty acid chains that were identified in the natural nuclear membranes by lipid mass spectrometry, have been used to reconstruct complex model membranes mimicking nuclear envelope precursor membranes. Structural and dynamic events occurring in the membrane core and at the membrane surface were monitored by solid-state deuterium and phosphorus NMR. “MV1-like” (PC∶PI∶PIP∶PIP2, 30∶20∶18∶12, mol%) membranes that exhibited high levels of PtdIns, PtdInsP and PtdInsP2 had an unusually fluid membrane core (up to 20% increase, compared to membranes with low amounts of phosphoinositides to mimic the endoplasmic reticulum). “NER-like” (PC∶CH∶PI∶PIP∶PIP2, 28∶42∶16∶7∶7, mol%) membranes containing high amounts of both cholesterol and phosphoinositides exhibited liquid-ordered phase properties, but with markedly lower rigidity (10–15% decrease). Phosphoinositides are the first lipids reported to counterbalance the ordering effect of cholesterol. At the membrane surface, phosphoinositides control the orientation dynamics of other lipids in the model membranes, while remaining unchanged themselves. This is an important finding as it provides unprecedented mechanistic insight into the role of phosphoinositides in membrane dynamics. Biological implications of our findings and a model describing the roles of fusogenic membrane vesicles are proposed
    corecore