1,349 research outputs found
Quantum transport properties of two-dimensional systems in disordered magnetic fields with a fixed sign
Quantum transport in disordered magnetic fields is investigated numerically
in two-dimensional systems. In particular, the case where the mean and the
fluctuation of disordered magnetic fields are of the same order is considered.
It is found that in the limit of weak disorder the conductivity exhibits a
qualitatively different behavior from that in the conventional random magnetic
fields with zero mean. The conductivity is estimated by the equation of motion
method and by the two-terminal Landauer formula. It is demonstrated that the
conductance stays on the order of even in the weak disorder limit. The
present behavior can be interpreted in terms of the Drude formula. The
Shubnikov-de Haas oscillation is also observed in the weak disorder regime.Comment: 6 pages, 7 figures, to appear in Phys. Rev.
Recommended from our members
Mechanical Properties and Biological Responses of Bioactive Glass Ceramics Processed using Indirect SLS
This paper will report on research which aims to generate bone replacement components by
processing bioactive glass-ceramic powders using indirect selective laser sintering. The indirect
SLS route has been chosen as it offers the ability to tailor the shape of the implant to the
implantation site, and two bioactive glass ceramic materials have been processed through this
route: apatite-mullite and apatite-wollostanite. The results of bend tests, to investigate
mechanical properties, and in vitro and in vivo experiments to investigate biological responses of
the materials will be reported, and the suitability of completed components for implant will be
assessed.Mechanical Engineerin
Comparison of two linearization schemes for the nonlinear bending problem of a beam pinned at both ends
The nonlinear bending problem of a constant cross-section simply supported beam pinned at both ends
and subject to a uniformly distributed load qðxÞ is analyzed in detail. The numerical integration of the
two-point boundary value problem (BVP) derived for the nonlinear Timoshenko beam is tackled through
two different linearization schemes, the multi-step transversal linearization (MTrL) and the multi-step
tangential linearization (MTnL), proposed by Viswanath and Roy (2007). The fundamentals of these linearization
techniques are to replace the nonlinear part of the governing ODEs through a set of conditionally
linearized ODE systems at the nodal grid points along the neutral axis, ensuring the intersection
between the solution manifolds (transversally in the MTrL and tangentially in the MTnL). In this paper,
the solution values are determined at grid points by means of a centered finite differences method with
multipoint linear constraints (Keller, 1969), and a simple iterative strategy. The analytical solution for this
kind of bending problem, including the extensional effects, can be worked out by integration of the governing
two-point BVP equations (Monleón et al., 2008). Finally, the comparison of analytical and numerical
results shows the better ability of MTnL with the proposed iterative strategy to reproduce the
theoretical behavior of the beam for each load step, because the restraint of equating derivatives in MTnL
leads to further closeness between solution paths of the governing ODEs and the linearized ones, in comparison
with MTrL. This result is opposed to the conclusion reached in Viswanath and Roy (2007), where
the relative errors produced by MTrL are said to be smaller than the MTnL ones for the simply supported
beam and the tip-loaded cantilever beam problems.
2009 Elsevier Ltd. All rights reserved.Merli Gisbert, R.; Lazaro, C.; Monleón Cremades, S.; Domingo Cabo, A. (2010). Comparison of two linearization schemes for the nonlinear bending problem of a beam pinned at both ends. International Journal of Solids and Structures. 47(6):865-874. doi:10.1016/j.ijsolstr.2009.12.001S86587447
Apatite Formation Abilities and Mechanical Properties of Hydroxyethylmethacrylate-based Organic-inorganic Hybrids Incorporated with Sulfonic Groups and Calcium Ions
Apatite formation in the living body is an essential requirement for artificial materials to exhibit bone-bonding bioactivity. It has been recently revealed that sulfonic groups trigger apatite nucleation in a body environment. Organic–inorganic hybrids consisting of organic polymers and the sulfonic groups are therefore expected to be useful for preparation of novel bone-repairing materials exhibiting flexibility as well as bioactivity. In the present study, organic–inorganic hybrids were prepared from hydroxyethylmethacrylate (HEMA) in the presence of vinylsulfonic acid sodium salt (VSAS) and calcium chloride (CaCl2). The bioactivities of the hybrids were assessed in vitro by examining the apatite formation in simulated body fluid (SBF, Kokubo solution). The hybrids deposited on the apatite after soaking in SBF within 7 days. Tensile strength measurements showed a tendency to increase with increases in VSAS and CaCl2 content. It was assumed that this phenomenon was attributed to the formation of cross-linking in the hybrids
The components of directional and disruptive selection in heterogeneous group-structured populations.
We derive how directional and disruptive selection operate on scalar traits in a heterogeneous group-structured population for a general class of models. In particular, we assume that each group in the population can be in one of a finite number of states, where states can affect group size and/or other environmental variables, at a given time. Using up to second-order perturbation expansions of the invasion fitness of a mutant allele, we derive expressions for the directional and disruptive selection coefficients, which are sufficient to classify the singular strategies of adaptive dynamics. These expressions include first- and second-order perturbations of individual fitness (expected number of settled offspring produced by an individual, possibly including self through survival); the first-order perturbation of the stationary distribution of mutants (derived here explicitly for the first time); the first-order perturbation of pairwise relatedness; and reproductive values, pairwise and three-way relatedness, and stationary distribution of mutants, each evaluated under neutrality. We introduce the concept of individual k-fitness (defined as the expected number of settled offspring of an individual for which k-1 randomly chosen neighbors are lineage members) and show its usefulness for calculating relatedness and its perturbation. We then demonstrate that the directional and disruptive selection coefficients can be expressed in terms individual k-fitnesses with k=1,2,3 only. This representation has two important benefits. First, it allows for a significant reduction in the dimensions of the system of equations describing the mutant dynamics that needs to be solved to evaluate explicitly the two selection coefficients. Second, it leads to a biologically meaningful interpretation of their components. As an application of our methodology, we analyze directional and disruptive selection in a lottery model with either hard or soft selection and show that many previous results about selection in group-structured populations can be reproduced as special cases of our model
Coloured extension of GL_q(2) and its dual algebra
We address the problem of duality between the coloured extension of the
quantised algebra of functions on a group and that of its quantised universal
enveloping algebra i.e. its dual. In particular, we derive explicitly the
algebra dual to the coloured extension of GL_q(2) using the coloured RLL
relations and exhibit its Hopf structure. This leads to a coloured
generalisation of the R-matrix procedure to construct a bicovariant
differential calculus on the coloured version of GL_q(2). In addition, we also
propose a coloured generalisation of the geometric approach to quantum group
duality given by Sudbery and Dobrev.Comment: 10 pages LaTeX. Talk given at the "XXIII International Colloquium on
Group Theoretical Methods in Physics", July 31 - August 05, 2000, Dubna
(Russia); to appear in the proceeding
Magnetotransport in inhomogeneous magnetic fields
Quantum transport in inhomogeneous magnetic fields is investigated
numerically in two-dimensional systems using the equation of motion method. In
particular, the diffusion of electrons in random magnetic fields in the
presence of additional weak uniform magnetic fields is examined. It is found
that the conductivity is strongly suppressed by the additional uniform magnetic
field and saturates when the uniform magnetic field becomes on the order of the
fluctuation of the random magnetic field. The value of the conductivity at this
saturation is found to be insensitive to the magnitude of the fluctuation of
the random field. The effect of random potential on the magnetoconductance is
also discussed.Comment: 5 pages, 5 figure
Stern-Judging: A Simple, Successful Norm Which Promotes Cooperation under Indirect Reciprocity
We study the evolution of cooperation under indirect reciprocity, believed to constitute the biological basis of morality. We employ an evolutionary game theoretical model of multilevel selection, and show that natural selection and mutation lead to the emergence of a robust and simple social norm, which we call stern-judging. Under stern-judging, helping a good individual or refusing help to a bad individual leads to a good reputation, whereas refusing help to a good individual or helping a bad one leads to a bad reputation. Similarly for tit-for-tat and win-stay-lose-shift, the simplest ubiquitous strategies in direct reciprocity, the lack of ambiguity of stern-judging, where implacable punishment is compensated by prompt forgiving, supports the idea that simplicity is often associated with evolutionary success
Special issue “Science of solar system materials examined from Hayabusa and future missions (II)”
Six years have passed since the first asteroid sample was returned from the S-type near-Earth asteroid 25143 Itokawa by the JAXA’s Hayabusa mission in 2010 (Yada et al. 2014). Considerable progress has been made in the study of surface regolith materials and the understanding of planetary surface processes such as space weathering (Noguchi et al. 2011), the chronology of Itokawa and its dynamic evolution processes (Nagao et al. 2011; Park et al. 2015), and the thermal alteration undergone in parent bodies (Nakamura T et al. 2011). Discussions of new findings from the Hayabusa-returned samples and from a large collection of meteorites, micrometeorites, and interplanetary dust particles have continued, especially at the annual international Hayabusa symposia of solar system materials (Okada et al. 2015). Progress in sample return science has driven the next stage of exploration. Now, two new sample return missions to primitive, volatile-rich asteroids, JAXA’s Hayabusa2 (Tsuda et al. 2013) and NASA’s OSIRIS-REx (Lauretta et al. 2012), are en route to their target bodies, C-type 162173 Ryugu and B-type 101955 Bennu, respectively.
It is our great pleasure to present our second special issue of the journal Earth, Planets and Space, “Science of solar system materials examined from Hayabusa and future missions (II).” This special issue is based on discussions during the Hayabusa 2014 symposium, which featured new results from Hayabusa-returned samples and related studies, but was also open to any scientific results regarding primitive bodies and the early solar system, the results of laboratory experiments and ground-based observations, and reports of new instruments and methods. We will begin with a brief introduction to the missions of the Hayabusa and its successor Hayabusa2. In addition, all six manuscripts published in this special issue are reviewed below
Apatite Formation Abilities and Mechanical Properties of Hydroxyethylmethacrylate-based Organic-inorganic Hybrids Incorporated with Sulfonic Groups and Calcium Ions
Apatite formation in the living body is an essential requirement for artificial materials to exhibit bone-bonding bioactivity. It has been recently revealed that sulfonic groups trigger apatite nucleation in a body environment. Organic–inorganic hybrids consisting of organic polymers and the sulfonic groups are therefore expected to be useful for preparation of novel bone-repairing materials exhibiting flexibility as well as bioactivity. In the present study, organic–inorganic hybrids were prepared from hydroxyethylmethacrylate (HEMA) in the presence of vinylsulfonic acid sodium salt (VSAS) and calcium chloride (CaCl2). The bioactivities of the hybrids were assessed in vitro by examining the apatite formation in simulated body fluid (SBF, Kokubo solution). The hybrids deposited on the apatite after soaking in SBF within 7 days. Tensile strength measurements showed a tendency to increase with increases in VSAS and CaCl2 content. It was assumed that this phenomenon was attributed to the formation of cross-linking in the hybrids
- …