957 research outputs found

    PROTEINS OF THE POSTSYNAPTIC DENSITY

    Get PDF
    An analysis was made of the protein composition of a fraction of postsynaptic densities (PSDs) prepared from rat brain. Protein makes up 90% of the material in the PSD fraction. Two major polypeptide fractions are present, based on sodium dodecyl sulfate polyacrylamide gel electrophoresis. The major polypeptide fraction has a molecular weight of 53,000, makes up about 45% of the PSD protein, and comigrates on gels with a major polypeptide of the synaptic plasma membrane. The other polypeptide band has a molecular weight of 97,000, accounts for 17% of the PSD protein, and is not a prominent constituent of other fractions. Six other polypeptides of higher molecular weight (100,000–180,000) are consistently present in small amounts (3–9% each). The PSD fraction contains slightly greater amounts of polar amino acids and proline than the synaptic plasma membrane fraction, but no amino acid is usually prominent. The PSD apparently consists of a structural matrix formed primarily by a single polypeptide or class of polypeptides of 53,000 molecular weight. Small amounts of other specialized proteins are contained within this matrix

    ISOLATION OF POSTSYNAPTIC DENSITIES FROM RAT BRAIN

    Get PDF
    Most synapses in the central nervous system exhibit a prominent electron-opaque specialization of the postsynaptic plasma membrane called the postsynaptic density (PSD). We have developed a procedure for the isolation of PSDs which is based on their buoyant density and their insolubility in N-lauroyl sarcosinate. Treatment of synaptic membranes with this detergent solubilizes most plasma membranes and detaches PSDs from the plasma membrane so that they can be purified on a density gradient. Isolated PSDs appear structurally intact and exhibit those properties which characterize them in tissue. The isolated PSDs are of the size, shape, and electron opacity of those seen in tissue; they stain with both ethanolic phosphotungstic acid and bismuth iodide-uranyl lead and the fraction contains cyclic 3',5'-phosphodiesterase activity. Quantitative electron microscope analysis of the PSD fraction gives an estimated purity of better than 85%. Inasmuch as the PSD is associated primarily with dendritic excitatory synapses, our PSD fraction represents the distinctive plasma membrane specialization of this specific synaptic type in isolation

    Review on the acute Daphnia magna

    Full text link
    Executive summary : One of the most internationally used bioassays for toxicity screening of chemicals and for toxicity monitoring of effluents and contaminated waters is the acute toxicity test with daphnid crustaceans, and in particular that performed with Daphnia magna. Standard methods have been developed for this assay that were gradually endorsed by national and international organisations dealing with toxicity testing procedures, in view of its application within a regulatory framework. As for all toxicity tests, the organisms used for the acute D. magna assay have to be obtained from live stocks which are cultured in the laboratory on live food (micro-algae). Unsurprisingly the various standard protocols of this particular assay differ – at least to a certain extent – with regard to the test organism culturing conditions. In addition, some technical aspects of the toxicity test such as the effect criterion (mortality of immobility), the exposure time, the type of dilution water, etc., also vary from one standard to another. Although this particular assay is currently used in many countries, the technical and biological problems inherent in year-round culturing and availability of the biological material and the culturing/maintenance costs of live stocks restrict its application to a limited number of highly specialised laboratories. This fundamental bottleneck in toxicity testing triggered investigations which brought forward the concept of “microbiotests” or “small-scale” toxicity tests. “Culture/maintenance free” aquatic microbiotests with species of different phylogenetic groups were developed in the early 1990s at the Laboratory for Environmental Toxicology and Aquatic Ecology at the Ghent University in Belgium. These assays which were given the generic name “Toxkits”, are unique in that they employ dormant stages (“cryptobiotic eggs”) of the test species, which can be stored for long periods of time and “hatched” at the time of performance of the assays. One of these microbiotests is the Daphtoxkit F magna, which is currently used in many laboratories worldwide for research as well as for toxicity monitoring purposes. The microbiotest technology has several advantages in comparison to the “traditional” tests based on laboratory cultures, especially its independence of the stock culturing burden. However, the acceptance (or possible non-acceptance) of performing assays with test organisms obtained from “dormant eggs” should be clearly dictated by the “sensitivity” and “precision” criteria of the former assays in comparison to the latter. The first part of this review therefore thoroughly reviews the scientific literature and of data obtained from various laboratories for assays performed with either D. magna test organisms obtained from lab cultures or hatched from dormant eggs. Attention has focused on data of quality control tests performed on reference chemicals, and in particular on potassium dichromate (K2Cr2O7) for which an acceptability range of 0.6–2.1 mg·L–1 has been set in ISO standard 6341 for the 24 h EC50 of the acute D. magna assay. Mean EC50s, standard deviations and variation coefficients were calculated from the collected data, all of which are presented in tables and figures and discussed in detail. The major conclusions drawn from the analysis of the large number of quality control (QC) data on the acute D. magna toxicity test are that : (1) Virtually all results from assays performed with Daphnias taken from lab cultures or with Daphnia microbiotests are within the acceptability range set by ISO standard 6341 for the reference chemical potassium dichromate. (2) The mean 24 h EC50s of the Daphnia microbiotests performed in different laboratories are within the range of the mean EC50s of the assays based on lab cultures, and the variation coefficients (20 to 30%) are similar. (3) The precision – in terms of the long term in house variability – of the quality control Daphnia microbiotests is as good as that of the QC tests based on lab cultures. The review further reports on intra-laboratory sensitivity comparison studies performed during the last 15 years on pure chemicals and on natural samples, with both laboratory cultured organisms and Daphnias hatched from dormant eggs. These studies carried out in different laboratories showed EC50 correlation coefficients of 0.86 to 0.98, corroborating a similar sensitivity of the two types of test organisms. The third part of the review reports and analyses data on proficiency ringtests on the acute D. magna assay which have been organised in different countries since 2002 with either reference chemicals or with natural samples, and in which part of the laboratories performed their assays with Daphnia microbiotests and others with lab cultured Daphnias. The conclusions drawn from all the ringtests indicate that the sensitivity of Daphnia neonates hatched from dormant eggs is similar to that of test organisms taken from lab cultures and that in most cases the precision of the Daphnia microbiotest is superior to that of the assays based on lab cultures. The review finally addresses the issue of possible sensitivity differences of Daphnias hatched from dormant eggs which are produced by different D. magna strains. From these investigations it appeared that the EC50s from assays performed with Daphnias hatched from dormant eggs of different strains did not differ significantly from those from assays undertaken with daphnids from lab cultures. The obvious advantages of Daphnia microbiotests over tests with Daphnias stemming from lab cultures have led to the worldwide use of these culture/maintenance free and low cost small-scale assays in both research and toxicity monitoring. The Daphnia microbiotest is in current use in several countries for toxicity testing in a regulatory framework, and recent calculations indicate that about 10 000 acute D. magna assays are now performed annually with neonates hatched from dormant eggs. The use of dormant eggs to obtain test organisms independently of stock culturing has recently also been accepted in international standards for toxicity testing. ISO standard 20665 (2008) related to the determination of chronic toxicity with Ceriodaphnia dubia, and ISO standard 20666 (2008) for the determination of the chronic toxicity with Brachionus calyciflorus in 48 h, both indicate that the assays can be conducted with organisms hatched from dormant eggs. On the basis of the extensive scientific evidence provided in this review that is justifiably supported by the two ISO methods mentioned above, the authors therefore recommend that the use of Daphnias hatched from dormant eggs should also be incorporated in national and international standards, as an alternative to the use of Daphnias taken from laboratory cultures

    Deficient liver biosynthesis of docosahexaenoic acid correlates with cognitive impairment in Alzheimer\u27s disease

    Get PDF
    Reduced brain levels of docosahexaenoic acid (C22:6n-3), a neurotrophic and neuroprotective fatty acid, may contribute to cognitive decline in Alzheimer\u27s disease. Here, we investigated whether the liver enzyme system that provides docosahexaenoic acid to the brain is dysfunctional in this disease. Docosahexaenoic acid levels were reduced in temporal cortex, mid-frontal cortex and cerebellum of subjects with Alzheimer\u27s disease, compared to control subjects (P = 0.007). Mini Mental State Examination (MMSE) scores positively correlated with docosahexaenoic/α-linolenic ratios in temporal cortex (P = 0.005) and mid-frontal cortex (P = 0.018), but not cerebellum. Similarly, liver docosahexaenoic acid content was lower in Alzheimer\u27s disease patients than control subjects (P = 0.011). Liver docosahexaenoic/α-linolenic ratios correlated positively with MMSE scores (r = 0.78; P\u3c0.0001), and negatively with global deterioration scale grades (P = 0.013). Docosahexaenoic acid precursors, including tetracosahexaenoic acid (C24:6n-3), were elevated in liver of Alzheimer\u27s disease patients (P = 0.041), whereas expression of peroxisomal d-bifunctional protein, which catalyzes the conversion of tetracosahexaenoic acid into docosahexaenoic acid, was reduced (P = 0.048). Other genes involved in docosahexaenoic acid metabolism were not affected. The results indicate that a deficit in d-bifunctional protein activity impairs docosahexaenoic acid biosynthesis in liver of Alzheimer\u27s disease patients, lessening the flux of this neuroprotective fatty acid to the brain

    ISOLATION OF POSTSYNAPTIC DENSITIES FROM RAT BRAIN

    Full text link

    Dietary and Behavioral Interventions Protect against Age Related Activation of Caspase Cascades in the Canine Brain

    Get PDF
    Lifestyle interventions such as diet, exercise, and cognitive training represent a quietly emerging revolution in the modern approach to counteracting age-related declines in brain health. Previous studies in our laboratory have shown that long-term dietary supplementation with antioxidants and mitochondrial cofactors (AOX) or behavioral enrichment with social, cognitive, and exercise components (ENR), can effectively improve cognitive performance and reduce brain pathology of aged canines, including oxidative damage and Aβ accumulation. In this study, we build on and extend our previous findings by investigating if the interventions reduce caspase activation and ceramide accumulation in the aged frontal cortex, since caspase activation and ceramide accumulation are common convergence points for oxidative damage and Aβ, among other factors associated with the aged and AD brain. Aged beagles were placed into one of four treatment groups: CON – control environment/control diet, AOX– control environment/antioxidant diet, ENR – enriched environment/control diet, AOX/ENR– enriched environment/antioxidant diet for 2.8 years. Following behavioral testing, brains were removed and frontal cortices were analyzed to monitor levels of active caspase 3, active caspase 9 and their respective cleavage products such as tau and semaphorin7a, and ceramides. Our results show that levels of activated caspase-3 were reduced by ENR and AOX interventions with the largest reduction occurring with combined AOX/ENR group. Further, reductions in caspase-3 correlated with reduced errors in a reversal learning task, which depends on frontal cortex function. In addition, animals treated with an AOX arm showed reduced numbers of cells expressing active caspase 9 or its cleavage product semaphorin 7A, while ENR (but not AOX) reduced ceramide levels. Overall, these data demonstrate that lifestyle interventions curtail activation of pro-degenerative pathways to improve cellular health and are the first to show that lifestyle interventions can regulate caspase pathways in a higher animal model of aging

    Aspects of astrocyte energy metabolism, amino acid neurotransmitter homoeostasis and metabolic compartmentation

    Get PDF
    Astrocytes are key players in brain function; they are intimately involved in neuronal signalling processes and their metabolism is tightly coupled to that of neurons. In the present review, we will be concerned with a discussion of aspects of astrocyte metabolism, including energy-generating pathways and amino acid homoeostasis. A discussion of the impact that uptake of neurotransmitter glutamate may have on these pathways is included along with a section on metabolic compartmentation
    corecore