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Deficient Liver Biosynthesis of Docosahexaenoic Acid
Correlates with Cognitive Impairment in Alzheimer’s
Disease
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Elizabeth Head5, Carl W. Cotman3, Daniele Piomelli1,6,7*
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Discovery and Development, Italian Institute of Technology, Genoa, Italy

Abstract

Reduced brain levels of docosahexaenoic acid (C22:6n-3), a neurotrophic and neuroprotective fatty acid, may contribute to
cognitive decline in Alzheimer’s disease. Here, we investigated whether the liver enzyme system that provides
docosahexaenoic acid to the brain is dysfunctional in this disease. Docosahexaenoic acid levels were reduced in temporal
cortex, mid-frontal cortex and cerebellum of subjects with Alzheimer’s disease, compared to control subjects (P = 0.007).
Mini Mental State Examination (MMSE) scores positively correlated with docosahexaenoic/a-linolenic ratios in temporal
cortex (P = 0.005) and mid-frontal cortex (P = 0.018), but not cerebellum. Similarly, liver docosahexaenoic acid content was
lower in Alzheimer’s disease patients than control subjects (P = 0.011). Liver docosahexaenoic/a-linolenic ratios correlated
positively with MMSE scores (r = 0.78; P,0.0001), and negatively with global deterioration scale grades (P = 0.013).
Docosahexaenoic acid precursors, including tetracosahexaenoic acid (C24:6n-3), were elevated in liver of Alzheimer’s disease
patients (P = 0.041), whereas expression of peroxisomal D-bifunctional protein, which catalyzes the conversion of
tetracosahexaenoic acid into docosahexaenoic acid, was reduced (P = 0.048). Other genes involved in docosahexaenoic acid
metabolism were not affected. The results indicate that a deficit in D-bifunctional protein activity impairs docosahexaenoic
acid biosynthesis in liver of Alzheimer’s disease patients, lessening the flux of this neuroprotective fatty acid to the brain.
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Introduction

Alzheimer’s disease is a neurodegenerative disorder character-

ized clinically by progressive cognitive impairment [1]. Age is the

most important factor that predisposes persons to the non-familial

form of the disease, which in 2010 affected over 35 million elderly

adults worldwide [2]. How aging interacts with other risk factors

for Alzheimer’s disease [3] is still unknown. It appears, however,

that certain age-related pathologies that are closely associated with

systemic dysfunctions in lipid metabolism – including obesity and

diabetes – might be involved [1].

The polyunsaturated lipid, docosahexaenoic acid (C22:6n-3), is

an essential component of neuronal membranes [4,5] and a

precursor for potent neuroprotective mediators [6–8]. Mammals

obtain docosahexaenoic acid directly from dietary sources,

especially fish, but can also produce it in liver from n-3 fatty

acid precursors present in plants [9–11]. When the diet does not

provide an adequate supply of these foods, as is often the case in

contemporary populations [12], the liver’s capacity to generate

docosahexaenoic acid may become critical to keep normal the

brain levels of this fatty acid [9,11,13,14].

Figure 1 shows an overview of liver docosahexaenoic acid

biosynthesis. Elongase and desaturase enzymes localized in the

endoplasmic reticulum of the hepatocyte progressively add carbon

units and double bonds to shorter-chain n-3 fatty acids, producing

the very-long-chain tetracosahexaenoic acid (C24:6n-3). This is

transported into peroxisomes and then converted to docosahex-

aenoic acid by the sequential action of acyl-coenzyme A oxidases,

D-bifunctional protein and peroxisomal thiolases [15–18]. Liver-

derived docosahexaenoic acid reaches the brain through the

circulation, probably bound to proteins that are also synthesized

by hepatocytes [9].

Evidence indicates that docosahexaenoic acid serves important

neurotrophic functions during early mammalian development
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[19], particularly as precursors of phospholipids during synapto-

genesis, but is still unclear whether it plays protective roles in

adulthood and old age. Several, albeit not all, epidemiological and

clinical studies suggest that higher intake of docosahexaenoic acid

decreases the risk of cognitive decline and dementia in elderly

adults [4]. Animal experiments support this conclusion [20–22]

and further indicate that the fatty acid might exert these effects by

promoting neuronal survival [7,23]. The related question of

whether alterations in brain docosahexaenoic acid levels might

accompany cognitive decline has been addressed using post

mortem brain tissue from Alzheimer’s disease patients and age-

matched control subjects [6,24–30]. Despite some disparities,

these investigations generally support the hypothesis that Alzhei-

mer’s disease may be associated with deficits in brain docosahex-

aenoic acid [31]. In the present study, we reexamined this

possibility and searched for supporting correlative evidence that a

failing in brain docosahexaenoic acid integrity might result from

defective n-3 fatty acid metabolism in liver, as previously suggested

by Scott and Bazan [9].

Results

Docosahexaenoic acid levels in brain
Brain levels of non-esterified (‘free’) docosahexaenoic acid were

measured in extracts of temporal cortex, mid-frontal cortex and

cerebellum from a total of 17 control subjects and 37 Alzheimer’s

disease patients. Table 1 shows estimated mean differences

between the two groups after linear regression adjustment for

age, gender and post mortem interval. There were statistically

detectable differences (P,0.05) in docosahexaenoic acid content in

all regions examined. The pooled adjusted difference between

control subjects and Alzheimer’s disease patients (95% confidence

intervals) was 228.87 nanomoles per gram of tissue (249.81,

27.94; P = 0.007).

Since docosahexaenoic acid is stored in membrane phospholip-

ids, Table 1 also shows levels of docosahexaenoic acid-containing 1-

stearoyl, 2-docosahexaenoyl-sn-glycero-3-phosphoethanolamine in

the three brain regions. There were significant differences between

control subjects and Alzheimer’s disease patients in all regions. The

pooled adjusted difference between the two groups was 24.14

(27.20, 21.09; P = 0.008).

Levels of four n-3 fatty acids that serve as metabolic precursors

for docosahexaenoic acid – a-linolenic acid (C18:3n-3), eicosa-

pentaenoic acid (C20:5n-3), docosapentaenoic acid (C22:5n-3) and

tetracosahexaenoic acid (C24:6n-3) – were quantified in the same

extracts. There were marginally statistically detectable differences

between control subjects and Alzheimer’s disease patients only for

mid-frontal cortex a-linolenic acid (P = 0.045) (Table 2). However,

a significant difference between the two groups was detected when

a-linolenic acid content was pooled across brain regions. No

differences were observed for eicosapentaenoic acid and docosa-

pentaenoic acid. Tetracosahexaenoic acid levels were below the

detection limit of our assay (0.5 picomoles per sample).

Figure S1 shows individual data points for docosahexaenoic

acid and 1-stearoyl, 2-docosahexaenoyl-sn-glycero-3-phosphoetha-

nolamine in temporal cortex from control subjects and Alzhei-

mer’s disease patients. The figure also reports the statistical

correlation between temporal cortex docosahexaenoic/a-linolenic

ratios and most recent MMSE scores (Pearson’s correlation

coefficient = 0.44, P = 0.005). A comparable correlation was

detected between individual MMSE scores and docosahexae-

noic/a-linolenic ratios in mid-frontal cortex (Pearson’s correlation

coefficient = 0.38, P = 0.018), but not in cerebellum (Pearson’s

correlation coefficient = 0.27, P = 0.12).

Previous reports suggested that low brain levels of docosahex-

aenoic acid may be accompanied by decreases in n-6 polyunsat-

urated fatty acids [25,28,32]. Here, no significant differences were

observed in mid-frontal cortex and cerebellum for free linoleic acid

(C18:2n-6), eicosatrienoic acid (C20:3n-6) or arachidonic acid

(C20:4n-6) between control subjects and Alzheimer’s disease

patients (Table S1). A difference was detectable, however, for

arachidonic acid in temporal cortex (P = 0.02).

Docosahexaenoic acid levels in liver
The conversion of a-linolenic acid into docosahexaenoic acid

occurs primarily in liver [5,9,13]. To examine whether this

pathway is altered in Alzheimer’s disease, n-3 fatty acids were

quantified in liver samples from a second cohort of 9 control

subjects and 14 Alzheimer’s disease patients. These subjects were

selected from a larger available pool because they were negative

for hepatitis B or hepatitis C antibodies and, at autopsy, revealed

no histological signs of liver disease. A list of medications taken by

the subjects is provided in Table S2. There were statistically

detectable differences between the two groups for docosahexae-

noic acid, eicosapentaenoic acid, docosapentaenoic acid and

tetracosahexaenoic acid (Table 3). Additionally, differences were

observed for the docosahexaenoic acid-containing phospho-

lipid, 1-O-19-(Z)-octadecenyl, 2-docosahexaenoyl-sn-glycero-3-

phosphoethanolamine (Table 3).

Figure 2 shows individual data points for docosahexaenoic

acid and 1-O-19-(Z)-octadecenyl,2-docosahexaenoyl-sn-glycero-3-

phosphoethanolamine in liver, along with correlation analyses

between liver docosahexaenoic/a-linolenic ratios and most recent

MMSE and global deterioration scale scores. The ratios were

positively correlated with MMSE scores (Pearson’s correlation

Figure 1. Overview of docosahexaenoic acid biosynthesis in
liver. Diet-derived a-linolenic acid (C18:3n-3) is transformed into
tetracosahexaenoic acid (C24:6n-3) by the sequential action of D6 and
D5 desaturases (encoded by the FADS2 and FADS1 genes, respectively)
and elongases (such as that encoded by the HELO1 gene) present in the
endoplasmatic reticulum. Tetracosahexaenoic acid is transported into
peroxisomes (shaded area), presumably by proteins encoded by the
ABCD1 or ABCD2 genes, and then converted into docosahexaenoic acid
(C22:6n-3) by sequential action of acyl coenzyme-A oxidase (encoded
by the ACOX1 gene), D-bifunctional protein (encoded by the HSD17B4
gene), and various peroxisomal thiolases (not shown). The figure shows
chemical structures of fatty acids quantified in our analyses.
doi:10.1371/journal.pone.0012538.g001

Liver DHA in Dementia
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coefficient = 0.78, P,0.0001) (Fig. 2C) and negatively correlated

with global deterioration scale grades (P = 0.013; Fig. 2D).

No differences were noted for free eicosatrienoic acid and

arachidonic acid. In nanomoles per gram of tissue, eicosatrienoic

acid was 75.26633.37 in control subjects and 88.80639.40 in

Alzheimer’s disease patients (P = 0.17); and arachidonic acid was

522.466177.19 in control subjects and 435.966172.80 in

Alzheimer’s disease patients (P = 0.46). A significant difference

was observed, however, for free linoleic acid, the content of which

was, in nanomoles per gram of tissue, 849.006277.48 in control

subjects and 580.176253.79 in Alzheimer’s disease patients

(P = 0.042).

Docosahexaenoic acid biosynthesis in liver
The expression of genes involved in docosahexaenoic acid

biosynthesis was measured in the same liver samples. There were

statistically detectable differences only for the peroxisomal enzyme

D-bifunctional protein (encoded by the HSD17B4 gene), which

Table 1. Levels of free docosahexaenoic acid (nmol/g) and docosahexaenoate-containing phosphatidylethanolamine (nmol/g) in
various brain regions of control subjects and subjects with Alzheimer’s disease.

Control subjects Subjects with Alzheimer’s disease Adjusted Difference P-value*

Mean ± SD ; N Mean ± SD ; N (95% CI)

DHA

Temporal cortex 123.61624.07 ; 17 102.29640.66 ; 36 223.87 ( 245.18, 22.57 ) 0.029

Frontal cortex 119.99650.8 ; 17 97.45626.19 ; 37 222.11 ( 242.37, 21.85 ) 0.033

Cerebellum 218.186101.66 ; 16 174.86645.22 ; 35 242.58 ( 283.31, 21.84 ) 0.041

Pooled 152.64679.12 ; 17 124.35651.72 ; 37 228.87 ( 249.81, 27.94 ) 0.007

Phosphatidylethanolamine**

Temporal cortex 11.5263.58 ; 17 8.2664.06 ; 36 23.22 ( 25.56, 20.88 ) 0.008

Frontal cortex 29.765.94 ; 17 23.8365.84 ; 37 25.82 ( 29.32, 22.32 ) 0.002

Cerebellum 13.7164.16 ; 16 10.3764.75 ; 35 23.44 ( 26.28, 20.61 ) 0.018

Pooled 18.469.43 ; 17 14.3268.6 ; 38 24.14 ( 27.2, 21.09 ) 0.008

Abbreviations: CI, confidence interval.
*P-values for differences between means were computed by linear regression analysis for each fatty acid in selected brain regions and Generalized Estimating Equations
for the pooled analysis in the entire brain after adjustment for age, gender, and post mortem interval.
**Phosphatidylethanolamine was 1-stearoyl, 2-docosahexaenoyl-sn-glycero-phosphoethanolamine.
doi:10.1371/journal.pone.0012538.t001

Table 2. Levels of free n-3 fatty acids (nmol/g) in various brain regions of control subjects and subjects with Alzheimer’s disease.

n-3 Fatty acid Control subjects
Subjects with
Alzheimer’s disease Adjusted Difference P-value*

Mean ± SD ; N Mean ± SD ; N (95% CI)

a-Linolenic (C18:3)

Temporal cortex 1.7560.36 ; 17 1.9560.76 ; 36 0.17 ( 20.22, 0.57 ) 0.387

Frontal cortex 2.0760.42 ; 17 2.4660.79 ; 37 0.39 ( 0.01, 0.78 ) 0.045

Cerebellum 1.6560.54 ; 16 1.9160.59 ; 35 0.27 ( 20.08, 0.62 ) 0.130

Pooled 1.8260.47 ; 17 2.1260.76 ; 37 0.29 ( 0.06, 0.52 ) 0.019

Eicosapentaenoic (C20:5)

Temporal cortex 2.1361.18 ; 17 1.9561.34 ; 36 20.21 ( 20.99, 0.58 ) 0.596

Frontal cortex 2.1861.09 ; 17 2.2761.57 ; 37 0.08 ( 20.8, 0.97 ) 0.848

Cerebellum 1.6461.11 ; 16 1.4660.48 ; 35 20.17 ( 20.62, 0.27 ) 0.437

Pooled 1.9961.13 ; 17 1.961.26 ; 37 20.06 ( 20.59, 0.47 ) 0.829

Docosapentaenoic (C22:5)

Temporal cortex 3.9862.52 ; 17 3.7263.23 ; 36 20.24 ( 22.09, 1.61 ) 0.718

Frontal cortex 7.4561.69 ; 17 7.2562.41 ; 37 20.15 ( 21.45, 1.16 ) 0.821

Cerebellum 9.4564.59 ; 16 9.6762.78 ; 35 0.20 ( 21.87, 2.26 ) 0.850

Pooled 7.0163.81 ; 17 6.8463.72 ; 37 20.17 ( 21.28, 0.94 ) 0.919

Abbreviations: CI, confidence interval.
*P-values for differences between means were computed by linear regression analysis for each fatty acid in selected brain regions and Generalized Estimating Equations
for the pooled analysis in the entire brain after adjustment for age, gender, and post mortem interval.
doi:10.1371/journal.pone.0012538.t002

Liver DHA in Dementia
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catalyzes the conversion of tetracosahexaenoic acid into docosa-

hexaenoic acid [17,18] (Table 4). Individual data points for

HSD17B4 mRNA are reported in Figure 2E.

Since D-bifunctional protein participates in the degradation of

branched-chain fatty acids, such as phytanic acid and pristanic

acid, the levels of these compounds were also measured. In

nanomoles per gram of tissue, phytanic acid was 1.9360.51 in

control subjects and 4.3361.80 in Alzheimer’s disease patients

[adjusted difference (95% confidence intervals): 2.53 (1.17, 3.90);

P = 0.001]; pristanic acid was 2.1061.05 in control subjects and

4.2361.58 in Alzheimer’s disease patients [adjusted difference

(95% confidence intervals): 2.37 (1.03, 3.70); P = 0.002]. Individ-

ual data points for pristanic acid are shown in Figure 2F.

Discussion

The first objective of this study was to reexamine the association,

suggested by past reports [6,24–30], between Alzheimer’s disease

and lowered brain docosahexaenoic acid content. Our findings

provide new evidence in support of such association and further

reveal the existence of a positive correlation between brain

docosahexaenoic acid levels and cognitive status. To identify

potential mechanisms responsible for the observed breakdown in

brain docosahexaenoic acid integrity, we next focused our attention

on the liver because of the critical role played by this organ in

supplying docosahexaenoic acid to the brain [5,9,13]. Our results

indicate that docosahexaenoic acid levels and expression of D-

bifunctional protein, a key enzyme of docosahexaenoic acid

biosynthesis, are selectively reduced in liver of Alzheimer’s disease

patients. The functional significance of these findings is underscored

by the identification of a strong positive correlation between liver

docosahexaenoic acid content and cognitive status (P,0.0001).

Previous studies have suggested that brain levels of docosahex-

aenoic acid [6] and docosahexaenoic acid-containing phospholip-

ids [24–30] are reduced in Alzheimer’s disease (see [31] for a

discussion of discordances). Our investigations confirmed those

results. In agreement with Lukiw et al. (2005) [6], we found that

docosahexaenoic acid is reduced in temporal cortex and mid-

frontal cortex from 37 subjects with Alzheimer’s disease, compared

to 17 closely matched control subjects. Additionally, our analyses

suggested that (i) this deficit is selective for docosahexaenoic acid,

because other n-3 or n-6 fatty acids are only marginally affected,

and (ii) docosahexaenoic acid levels in temporal cortex and mid-

frontal cortex positively correlate with cognitive status. This

correlation highlights the significance of brain docosahexaenoic

acid in normal cognition, though further research is needed to

determine if it represents cause and effect.

We were surprised to find that a decrease in docosahexaenoic

acid was clearly detectable in cerebellum, a brain region that is

regarded as being less vulnerable to Alzheimer’s pathology. This

finding led us to hypothesize that the alteration in brain

docosahexaenoic acid might result from a systemic deficiency in

the biosynthesis of this fatty acid. In mammals, the enzyme

pathway responsible for docosahexaenoic acid production is

primarily localized to the liver [5,9,13]. Therefore, to determine

whether this pathway is dysfunctional in Alzheimer’s disease, we

examined the lipid composition of liver samples from 14 patients

and 9 control subjects, who displayed no histological sign of liver

pathology. Our analyses show that liver tissue from Alzheimer’s

patients contains reduced levels of docosahexaenoic acid, but

elevated levels of tetracosahexaenoic acid and other n-3 fatty acids.

This profile is incompatible with a nutritional deficit in n-3

fatty acids and is suggestive of a defect in the last step of

docosahexaenoic acid biosynthesis – the b-oxidative conversion of

tetracosahexaenoic acid into docosahexaenoic acid, which occurs

in liver peroxisomes (Fig. 1). Two additional findings support this

interpretation and point to a selective involvement of peroxisomal

D-bifunctional protein: the accumulation of pristanic acid and

phytanic acid, two substrates for liver D-bifunctional protein, and

the lowered expression of the HSD17B4 gene, which encodes for

this protein [17,18,33]. Notably, other genes included in our panel

were not significantly different between Alzheimer’s disease

patients and control subjects. These results are consistent with

previous reports suggesting that D-bifunctional protein mutations

are associated with reduced docosahexaenoic acid levels in human

liver and brain [34,35].

The pathological events that lead to down-regulation of liver D-

bifunctional protein in Alzheimer’s disease remain to be

discovered. However, a role for oxidative stress, which is known

to accelerate age-dependent liver peroxisomal damage [36–38],

might be hypothesized. Furthermore, it is important to note that

our analyses were focused on docosahexaenoic acid biosynthesis

and did not evaluate the potential impact of other aspects of

docosahexaenoic acid metabolism – including transport and

oxidation.

A significant outcome of our analyses was the discovery that

liver docosahexaenoic acid levels are positive correlated with

MMSE scores, and negatively correlated with global deterioration

Table 3. Levels of free n-3 fatty acids (nmol/g) and docosahexanoate-containing phosphatidylethanolamine (nmol/g) in liver of
control subjects and subjects with Alzheimer’s disease.

n-3 Fatty acid Control subjects
Subjects with
Alzheimer’s disease Adjusted Difference P-value*

Mean ± SD ; N = 9 Mean ± SD ; N = 14 (95% CI)

a-Linolenic (C18:3) 28.5567.88 36.72622.05 11.19 (24.53, 26.9) 0.152

Eicosapentaenoic (C20:5) 44.57614.74 67.4629.46 27.29 (6.69, 47.88) 0.012

Docosapentaenoic (C22:5) 21.5168.97 32.39613.82 12.7 (2.37, 23.03) 0.019

Tetrahexaenoic (C24:6) 0.7360.17 0.960.21 0.19 (0.01, 0.38) 0.041

Docosahexaenoic (C22:6) 324.836122.89 204.64674.62 2107.79 (2187.71, 227.87) 0.011

Phosphatidylethanolamine** 75.49632.30 46.42615.73 234.68 (255.86, 213.50) 0.003

Abbreviations: CI, confidence interval.
*P-values for differences between means were computed by linear regression analysis after adjustment for age, gender, and post mortem interval.
**Phosphatidylethanolamine was 1-O-19-(Z)-octadecenyl, 2-docosahexaenoyl-sn-glycero-3-phosphoethanolamine.
doi:10.1371/journal.pone.0012538.t003
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Figure 2. Liver metabolism in Alzheimer’s disease patients. Levels of free docosahexaenoic acid (Panel A) and 1-O-19-(Z)-octadecenyl, 2-
docosahexaenoyl-sn-glycero-3-phosphoethanolamine (Panel B) in liver tissue from control subjects (open squares) and Alzheimer’s disease patients
(closed circles). Correlation between individual docosahexaenoic/a-linolenic ratios in liver and most recent Mini-Mental State Examination scores
(Panel C) or global deterioration scale grades (Panel D). HSD17B4 mRNA, encoding for D-bifunctional protein (Panel E) and pristanic acid levels (Panel
F) in liver from control subjects (open squares) and subjects with Alzheimer’s disease (closed circles). Lipid content is expressed in nanomoles per
gram of wet tissue and mRNA levels are expressed in arbitrary units. There were statistically detectable differences between control subjects and
Alzheimer’s disease patients in the levels of docosahexaenoic acid (P = 0.0077) and 1-O-19-(Z)-octadecenyl, 2-docosahexaenoyl-sn-glycero-3-
phosphoethanolamine (P = 0.003) by two-tailed Welch’s t-test. There was a significant correlation between docosahexaenoic/a-linolenic ratios in liver
and Mini-Mental State Examination scores with use of the partial correlation analysis after adjustment for age, gender and post mortem interval.
Global deterioration scale grades correlate significantly (P = 0.013) with the docosahexaenoic/a-linolenic ratios using a linear regression analysis
adjusting for age, gender and post mortem interval. There were statistically detectable differences between control subjects and patients in the levels
of HSD17B4 mRNA (P = 0.048) and pristanic acid (P = 0.0009) by two-tailed Welch’s t-test.
doi:10.1371/journal.pone.0012538.g002
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scale grades. Although it is well established that patients with

advanced liver diseases show a decline in cognitive abilities [39],

these findings reveal a previously unrecognized association

between hepatic docosahexaenoic acid homeostasis and global

cognition, and suggest that subtle changes in liver docosahex-

aenoic acid metabolism might be associated with dementia. This

supports early suggestions that in neurodegenerative disorders and

aging, a failure in the supply of docosahexaenoic acid from the

liver may take place [9]. Moreover, a circulatory ‘‘long loop’’

connects the supply of docosahexaenoic acid to the biogenesis of

excitable and photoreceptor membranes [40]. In retinal degener-

ative diseases, a shortage of blood docosahexaenoic acid has been

demonstrated, and a failure of the ‘‘long loop’’ from the liver is

suggested to underlie these changes [41]. Future prospective

investigations should explore the temporal relationship between

such changes and the development of Alzheimer’s pathology. As

with all observational studies, there is the possibility that

unmeasured factors may explain our results, even though we

chose a priori to adjust for the three most likely confounders – age,

gender and post mortem interval. Furthermore, though limited by

the lack of information on dosages and treatment duration, our

analysis of the medication record reveals no obvious correlation

between individual drug classes and liver docosahexaenoic acid

(Figure S2). Despite these inevitable limitations, our results do

suggest that a dysfunction in liver docosahexaenoic acid

metabolism, at least partly caused by abnormal D-bifunctional

protein expression, might predispose persons to Alzheimer’s

disease. This has implications both for clinical interventions with

n-3 fatty acids, which should take into consideration the limited

ability of Alzheimer’s disease patients to complete docosahexae-

noic acid biosynthesis, and for the discovery of peripheral lipid

biomarkers of Alzheimer’s disease.

Materials and Methods

Study design and tissue procurement
We conducted this study in two parts. We first determined

whether brain levels of docosahexaenoic acid are altered in

Alzheimer’s disease [6,24–30] and whether such alterations

correlate with cognitive status. We used frozen brain samples

from a total of 17 non-demented control subjects and 37

pathologically confirmed subjects with Alzheimer’s disease

(males/females: control subjects, 10/7; subjects with Alzheimer’s

disease, 20/17), provided by the Institute for Brain Aging and the

Dementia and Alzheimer’s Disease Research Center at the

University of California, Irvine. Three brain areas were selected

for analysis: temporal cortex (Broadmann area 20; 17 control

subjects and 36 subjects with Alzheimer’s disease), mid-frontal

cortex (Broadmann area 9; 17 control subjects and 37 subjects

with Alzheimer’s disease), and cerebellum (16 control subjects and

35 subjects with Alzheimer’s disease). Subjects were matched for

age (in years: control subjects, 80.568.5; subjects with Alzheimer’s

disease, 80.567.3) and post mortem interval (in hours: control

subjects, 4.461.5; subjects with Alzheimer’s disease, 4.261.7).

Alzheimer’s disease cases met the National Institute on Aging-

Reagan Institute criteria for intermediate or high likehood of

Alzheimer’s disease. Mini Mental State Examination (MMSE)

scores, a measure of cognitive status, were available for 10 control

subjects (mean score6SD = 28.361.8; assessed 44.3635.9 months

before death) and 29 subjects with Alzheimer’s disease (mean

score6SD = 12.467.2; assessed 11.066.2 months before death).

Because the liver is a primary source of brain docosahexaenoic

acid, in the second part of the study we examined whether

Alzheimer’s disease might be associated with alterations in liver n-

3 fatty acid metabolism. Frozen liver samples from a separate

cohort of 9 control subjects and 14 subjects with Alzheimer’s

disease (males/females: control subjects, 7/2; subjects with

Alzheimer’s disease, 8/6) were obtained from the Banner Sun

Health Research Institute (Sun City, AZ). These were selected

from a larger available pool because they were negative for

hepatitis B or hepatitis C antibodies and, at autopsy, revealed no

histological signs of liver disease (by hematoxylin/eosin staining).

They were matched for age (in years: control subjects, 83.965.4;

subjects with Alzheimer’s disease, 84.666.7) and post mortem

interval (in hours: control subjects, 3.460.9; subjects with

Alzheimer’s disease, 3.260.6). Alzheimer’s disease cases met the

National Institute on Aging-Reagan Institute criteria for interme-

diate or high likelihood of Alzheimer’s disease. MMSE scores were

available for 7 control subjects (mean6SD = 28.161.7; assessed

7.165.6 months before death) and 12 subjects with Alzheimer’s

Table 4. Expression of genes involved in docosahexaenoic acid biosynthesis and peroxisomal function in liver of control subjects
and subjects with AD.

Gene Control Subjects Subjects with Alzheimer’s disease Adjusted Difference P-value*

Symbol Mean ± SD; N = 9 Mean ± SD; N = 14 (95% CI)

FADS2 0.0260.029 0.01660.0099 20.0017 (20.02, 0.017) 0.851

HELO1 0.01160.012 0.00660.0046 20.0043 (20.012, 0.0036) 0.265

FADS1 0.03760.061 0.02460.026 20.0071 (20.044, 0.03) 0.693

ABCD1 0.02760.034 0.0260.024 20.0089 (20.036, 0.018) 0.500

ABCD2 8e-0460.001 0.001160.0013 0.00031 (28e-04, 0.0014) 0.567

ACOX1 0.260.24 0.3160.68 0.069 (20.45, 0.59) 0.782

HSD17B4 0.1860.045 0.1460.046 20.041 (20.083, 20.00039) 0.048

PEX13 0.04160.017 0.03760.017 20.0047 (20.022, 0.012) 0.569

PEX14 0.008760.004 0.01360.022 0.0029 (20.013, 0.019) 0.700

PEX19 0.01860.018 0.01260.0054 20.0055 (20.016, 0.0051) 0.291

Abbreviations: CI, confidence interval.
*P-values for differences between means were computed by linear regression analysis after adjustment for age, gender, and RNA integrity number.
Hydroxysteroid (17-beta) dehydrogenase 4, HSD17B4; for other abbreviations see Text S1.
doi:10.1371/journal.pone.0012538.t004
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disease (mean6SD = 11.9610.6; assessed 10.168.7 months be-

fore death). Global deterioration scale scores were available for 6

control subjects and 9 subjects with Alzheimer’s disease.

All subjects and their caregivers (when appropriate) provided

written informed consent for both the clinical examination as well

as for brain donation at the University of California Irvine and for

liver donation at the Banner Sun Health Research Institute Brain

and Body Donation Program. The protocols and informed

consent have been approved by the University of California

Irvine Institutional Biosafety Committee and the Banner Health

Institutional Review Board.

Lipid and gene expression analyses
Analyses are described in Text S1 available online with this

article.

Statistical analyses
Descriptive statistics are presented as means 6 SD. The

differences between unadjusted mean values were determined by

two-tailed Welch’s t-test. Associations between parameters were

tested by partial correlation analysis (Pearson’s). Generalized

Estimating Equations [42] were used to determine the overall

association of individual lipid species with Alzheimer’s disease –

adjusting for the a priori-specified potential confounders of age,

gender, and post mortem interval – by pooling data across frontal

cortex, temporal cortex and cerebellum. An exchangeable working

correlation structure was used in model fitting, and robust

standard errors [43] were used for inference in the Generalized

Estimating Equations analysis. Adjusting for the covariates listed

above, we used linear regression to estimate the association

between individual lipid species and Alzheimer’s disease. Linear

regression was also utilized to determine differences in mRNA

expression levels adjusting for age, gender, and RNA integrity

number. All confidence intervals correspond to a 95% confidence

level without adjustment for multiple comparisons.

Supporting Information

Text S1 Supplementary Materials and Methods.

Found at: doi:10.1371/journal.pone.0012538.s001 (0.06 MB

DOC)

Figure S1 Levels of free DHA (Panel A) and 1-stearoyl-2-

docosahexaenoyl-sn-glycero-3-phosphoethanolamine (Panel B) in

temporal cortex of control subjects (open squares) and subjects

with AD (closed circles). Correlation analysis between individual

docosahexaenoic/a-linolenic ratios in temporal cortex and most

recent Mini-Mental State Examination scores (Panel C). Lipid

content is expressed in nanomoles per gram of wet tissue. There

were statistically detectable differences between control subjects

and patients in the levels of DHA (P = 0.019) and 1-stearoyl-2-

docosahexaenoyl-sn-glycero-3-phosphoethanolamine (P = 0.0084)

by two-tailed Welch’s t-test. There was a significant correlation

between docosahexaenoic/a-linolenic ratios and Mini-Mental

State Examination scores by partial correlation analysis after

adjustment for age, gender and post mortem interval.

Found at: doi:10.1371/journal.pone.0012538.s002 (6.78 MB TIF)

Figure S2 Correlation between liver docosahexaenoic acid and

individual drug classes taken by the control subjects (open squares)

and Alzheimer’s disease patients (closed circles).

Found at: doi:10.1371/journal.pone.0012538.s003 (6.78 MB TIF)

Table S1 Levels of free n-6 fatty acids (nmol/g) in various brain

regions of control subjects and subjects with Alzheimer’s disease.

Found at: doi:10.1371/journal.pone.0012538.s004 (0.10 MB

DOCX)

Table S2 List of medications taken by the subjects involved in

the liver study.

Found at: doi:10.1371/journal.pone.0012538.s005 (0.06 MB

DOCX)
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