22 research outputs found

    Morpho-functional basis of endothelial dysfunction in diabetes mellitus

    Get PDF
    The diabetes mellitus (DM) inevitably progresses and leads to complications, among which the main place is occupied by micro- and macroangiopathies. The presence of endothelial damage in DM can be established even before macroscopically significant damage to the vessel. At the same time, there is no summary ED characteristic for diabetes. The aim of the study is to make a comprehensive evaluation of ED in DM -1 and DM-2 types.Materials and methods of research. 60 persons, including 53 DM type 1 and type 2, with a severe course (state of decompensation) participated in the present study. We used the method of estimating ED by the number of circulating desquamation endothelial cells (CECs) at the stages of decomposition with simultaneous determination of NO2- and NO3- metabolites of nitric oxide.Results and discussion. In patients with diabetes, the level of CECs increased in 3-5 times and ranged from 1800 to 11,200 cells / ml. The average amount of CECs in patients with diabetes was 3358.5 ± 366.3 cells / ml.Conclusions: Endothelium is involved in the pathological process at DM. This is evidenced by a significant increase in CECs in the blood plasma. The use of this method allows to detect ED before clinically considerable vascular impairment and reflects the severity of the course and duration of DM

    The Circadian Clock Protein CRY1 Is a Negative Regulator of HIF-1 alpha

    Get PDF
    The circadian clock and the hypoxia-signaling pathway are regulated by an integrated interplay of positive and negative feedback limbs that incorporate energy homeostasis and carcinogenesis. We show that the negative circadian regulator CRY1 is also a negative regulator of hypoxia-inducible factor (HIF). Mechanistically, CRY1 interacts with the basic-helix-loop-helix domain of HIF-1a via its tail region. Subsequently, CRY1 reduces HIF-1a half-life and binding of HIFs to target gene promoters. This appeared to be CRY1 specific because genetic disruption of CRY1, but not CRY2, affected the hypoxia response. Furthermore, CRY1 deficiency could induce cellular HIF levels, proliferation, and migration, which could be reversed by CRISPR/Cas9- or short hairpin RNA-mediated HIF knockout. Altogether, our study provides a mechanistic explanation for genetic association studies linking a disruption of the circadian clock with hypoxia-associated processes such as carcinogenesis

    Human Stiff-Person Syndrome IgG Induces Anxious Behavior in Rats

    Get PDF
    Background: Anxiety is a heterogeneous behavioral domain playing a role in a variety of neuropsychiatric diseases. While anxiety is the cardinal symptom in disorders such as panic disorder, co-morbid anxious behavior can occur in a variety of diseases. Stiff person syndrome (SPS) is a CNS disorder characterized by increased muscle tone and prominent agoraphobia and anxiety. Most patients have high-titer antibodies against glutamate decarboxylase (GAD) 65. The pathogenic role of these autoantibodies is unclear. Methodology/Principal Findings: We re-investigated a 53 year old woman with SPS and profound anxiety for GABA-A receptor binding in the amygdala with (11)C-flumazenil PET scan and studied the potential pathogenic role of purified IgG from her plasma filtrates containing high-titer antibodies against GAD 65. We passively transferred the IgG fraction intrathecally into rats and analyzed the effects using behavioral and in vivo electrophysiological methods. In cell culture, we measured the effect of patient IgG on GABA release from hippocampal neurons. Repetitive intrathecal application of purified patient IgG in rats resulted in an anxious phenotype resembling the core symptoms of the patient. Patient IgG selectively bound to rat amygdala, hippocampus, and frontal cortical areas. In cultured rat hippocampal neurons, patient IgG inhibited GABA release. In line with these experimental results, the GABA-A receptor binding potential was reduced in the patient’s amygdala/hippocampus complex. No motor abnormalities were found in recipient rats. Conclusion/Significance: The observations in rats after passive transfer lead us to propose that anxiety-like behavior can be induced in rats by passive transfer of IgG from a SPS patient positive for anti-GAD 65 antibodies. Anxiety, in this case, thus may be an antibody-mediated phenomenon with consecutive disturbance of GABAergic signaling in the amygdala region

    Erythropoietin: a multimodal neuroprotective agent

    Get PDF
    The tissue protective functions of the hematopoietic growth factor erythropoietin (EPO) are independent of its action on erythropoiesis. EPO and its receptors (EPOR) are expressed in multiple brain cells during brain development and upregulated in the adult brain after injury. Peripherally administered EPO crosses the blood-brain barrier and activates in the brain anti-apoptotic, anti-oxidant and anti-inflammatory signaling in neurons, glial and cerebrovascular endothelial cells and stimulates angiogenesis and neurogenesis. These mechanisms underlie its potent tissue protective effects in experimental models of stroke, cerebral hemorrhage, traumatic brain injury, neuroinflammatory and neurodegenerative disease. The preclinical data in support of the use of EPO in brain disease have already been translated to first clinical pilot studies with encouraging results with the use of EPO as a neuroprotective agent

    Adjunctive Dexamethasone Affects the Expression of Genes Related to Inflammation, Neurogenesis and Apoptosis in Infant Rat Pneumococcal Meningitis

    Get PDF
    Streptococcus pneumoniae is the most common pathogen causing non-epidemic bacterial meningitis worldwide. The immune response and inflammatory processes contribute to the pathophysiology. Hence, the anti-inflammatory dexamethasone is advocated as adjuvant treatment although its clinical efficacy remains a question at issue. In experimental models of pneumococcal meningitis, dexamethasone increased neuronal damage in the dentate gyrus. Here, we investigated expressional changes in the hippocampus and cortex at 72 h after infection when dexamethasone was given to infant rats with pneumococcal meningitis. Nursing Wistar rats were intracisternally infected with Streptococcus pneumoniae to induce experimental meningitis or were sham-infected with pyrogen-free saline. Besides antibiotics, animals were either treated with dexamethasone or saline. Expressional changes were assessed by the use of GeneChip® Rat Exon 1.0 ST Arrays and quantitative real-time PCR. Protein levels of brain-derived neurotrophic factor, cytokines and chemokines were evaluated in immunoassays using Luminex xMAP® technology. In infected animals, 213 and 264 genes were significantly regulated by dexamethasone in the hippocampus and cortex respectively. Separately for the cortex and the hippocampus, Gene Ontology analysis identified clusters of biological processes which were assigned to the predefined categories “inflammation”, “growth”, “apoptosis” and others. Dexamethasone affected the expression of genes and protein levels of chemokines reflecting diminished activation of microglia. Dexamethasone-induced changes of genes related to apoptosis suggest the downregulation of the Akt-survival pathway and the induction of caspase-independent apoptosis. Signalling of pro-neurogenic pathways such as transforming growth factor pathway was reduced by dexamethasone resulting in a lack of pro-survival triggers. The anti-inflammatory properties of dexamethasone were observed on gene and protein level in experimental pneumococcal meningitis. Further dexamethasone-induced expressional changes reflect an increase of pro-apoptotic signals and a decrease of pro-neurogenic processes. The findings may help to identify potential mechanisms leading to apoptosis by dexamethasone in experimental pneumococcal meningitis

    Bacterial extracellular vesicles – brain invaders?:a systematic review

    No full text
    Abstract Introduction: Knowledge on the human gut microbiota in health and disease continues to rapidly expand. In recent years, changes in the gut microbiota composition have been reported as a part of the pathology in numerous neurodegenerative diseases. Bacterial extracellular vesicles (EVs) have been suggested as a novel mechanism for the crosstalk between the brain and gut microbiota, physiologically connecting the observed changes in the brain to gut microbiota dysbiosis. Methods: Publications reporting findings on bacterial EVs passage through the blood–brain barrier were identified in PubMed and Scopus databases. Results: The literature search yielded 138 non-duplicate publications, from which 113 records were excluded in title and abstract screening step. From 25 publications subjected to full-text screening, 8 were excluded. The resulting 17 publications were considered for the review. Discussion: Bacterial EVs have been described with capability to cross the blood–brain barrier, but the mechanisms behind the crossing remain largely unknown. Importantly, very little data exists in this context on EVs secreted by the human gut microbiota. This systematic review summarizes the present evidence of bacterial EVs crossing the blood–brain barrier and highlights the importance of future research on gut microbiota-derived EVs in the context of gut-brain communication across the blood–brain barrier

    Loss of Cln5 leads to altered Gad1 expression and deficits in interneuron development in mice

    No full text
    The Finnish variant Late Infantile Neuronal Ceroid Lipofuscinosis (vLINCLFin), also known as CLN5 disease, is caused by mutations in the CLN5 gene. Cln5 is strongly expressed in the developing brain and expression continues into adulthood. CLN5, a protein of unknown function, is implicated in neurodevelopment but detailed investigation is lacking. Using Cln5-/- embryos of various ages and cells harvested from Cln5-/- brains we investigated the hitherto unknown role of Cln5 in the developing brain. Loss of Cln5 results in neuronal differentiation deficits and delays in interneuron development during in utero period. Spesifically, the radial thickness of dorsal telencephalon was significantly decreased in Cln5-/- mouse embryos at embryonic day 14.5 (E14.5), and expression of Tuj1, an important neuronal marker during development, was down-regulated. An interneuron marker calbindin and a mitosis marker p-H3 showed down-regulation in ganglionic eminences. Neurite outgrowth was compromised in primary cortical neuronal cultures derived from E16 Cln5−/− embryos compared to WT embryos. We show that the developmental deficits of interneurons may be linked to increased levels of the Repressor Element 1-Silencing Transcription factor (REST), which we report to bind to Gad1, which encodes glutamate decarboxylase (GAD) 67, a rate-limiting enzyme in the production of GABA. Indeed, adult Cln5-/- mice presented deficits in hippocampal parvalbumin-positive interneurons. Furthermore, adult Cln5-/- mice showed age-independent cortical hyper excitability as measured by electroencephalogram and auditory-evoked potentials. This study highlights the importance of Cln5 in neurodevelopment and suggests that in contrast to earlier reports, CLN5 disease is likely to develop during embryonic stages

    Increased levels of the HER1 adaptor protein Ruk(l)/CIN85 contribute to breast cancer malignancy

    No full text
    The adaptor protein regulator for ubiquitous kinase/c-Cbl-interacting protein of 85kDa (Ruk/CIN85) was found to modulate HER1/EGFR signaling and processes like cell adhesion and apoptosis. Although these features imply a role in carcinogenesis, it is so far unknown how and by which molecular mechanisms Ruk/CIN85 could affect a certain tumor phenotype. By analyzing samples from breast cancer patients, we found high levels of Rukl/CIN85 especially in lymph node metastases from patients with invasive breast adenocarcinomas, suggesting that Rukl/CIN85 contributes to malignancy. Expression of Rukl/CIN85 in weakly invasive breast adenocarcinoma cells deficient of Rukl/CIN85 indeed converted them into more malignant cells. In particular, Rukl/CIN85 reduced the growth rate, decreased cell adhesion, enhanced anchorage-independent growth, increased motility in both transwell migration and wound healing assays as well as affected the response to epidermal growth factor. Thereby, Rukl/CIN85 led to a more rapid and prolonged epidermal growth factor-dependent activation of Src, Akt and ERK1/2 and treatment with the Src inhibitor PP2 and the PI3K inhibitor LY294002 abolished the Rukl/CIN85-dependent changes in cell motility. Together, this study indicates that high levels of Rukl/CIN85 contribute to the conversion of breast adenocarcinoma cells into a more malignant phenotype via modulation of the Src/Akt pathway
    corecore