25 research outputs found

    I. Novikov and E. Semenov,Haar Series and Linear Operators

    Get PDF

    Harmful algal blooms and eutrophication : examining linkages from selected coastal regions of the United States

    Get PDF
    Author Posting. © Elsevier B.V., 2008. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Harmful Algae 8 (2008): 39-53, doi:10.1016/j.hal.2008.08.017.Coastal waters of the United States (U.S.) are subject to many of the major harmful algal bloom (HAB) poisoning syndromes and impacts. These include paralytic shellfish poisoning (PSP), neurotoxic shellfish poisoning (NSP), amnesic shellfish poisoning (ASP), ciguatera fish poisoning (CFP) and various other HAB phenomena such as fish kills, loss of submerged vegetation, shellfish mortalities, and widespread marine mammal mortalities. Here, the occurrences of selected HABs in a selected set of regions are described in terms of their relationship to eutrophication, illustrating a range of responses. Evidence suggestive of changes in the frequency, extent or magnitude of HABs in these areas is explored in the context of the nutrient sources underlying those blooms, both natural and anthropogenic. In some regions of the U.S., the linkages between HABs and eutrophication are clear and well documented, whereas in others, information is limited, thereby highlighting important areas for further research.Support was provided through the Woods Hole Center for Oceans and Human Health (to DMA), National Science Foundation (NSF) grants OCE-9808173 and OCE-0430724 (to DMA), OCE-0234587 (to WPC), OCE04-32479 (to MLP), OCE-0138544 (to RMK), OCE-9981617 (to PMG); National Institute of Environmental Health Sciences (NIEHS) grants P50ES012742-01 (to DMA) and P50ES012740 (to MLP); NOAA Grants NA96OP0099 (to DMA), NA16OP1450 (to VLT), NA96P00084 (to GAV and CAH), NA160C2936 and NA108H-C (to RMK), NA860P0493 and NA04NOS4780241 (to PMG), NA04NOS4780239-02 (to RMK), NA06NOS4780245 (to DWT). Support was also provided from the West Coast Center for Oceans and Human Health (to VLT and WPC), USEPA Grant CR826792-01-0 (to GAV and CAH), and the State of Florida Grant S7701617826 (to GAV and CAH)

    DEVELOPMENT AND TURBINE ENGINE PERFORMANCE OF THREE ADVANCED RHENIUM CONTAINING SUPERALLOYS FOR SINGLE CRYSTAL AND DIRECTIONALLY SOUDIFIED BLADES AND VANES

    Get PDF
    ABSTRACT Turbine inlet temperatures over the next few years will approach 1650°C (3000°F) at maximum power for the latest large commercial turbofan engines, resulting in high fuel efficiency and thrust levels approaching 445 kN (100,000 lbs). High reliability and durability must be intrinsically designed into these turbine engines to meet operating economic targets and ETOPS certification requirement This level of performance has been brought about by a combination of advances in air cooling for turbine blades and vanes, design technology for stresses and airflow, single crystal and directionally solidified casting process improvements and the development and use of rhenium (Re) containing high y' volume fraction nickel-base superalloys with advanced coatings, including full-airfoil ceramic thermal bather coatings. Re additions to cast airfoil superalloys not only improve creep and thermo-mechanical fatigue strength but also environmental properties, including coating performance. Re dramatically slows down diffusion in these alloys at high operating temperatures. A team approach has been used to develop a family of two nickel-base single crystal alloys (CMSX-4. containing 3% Re and CMSX0-10 containing 6% Re) and a directionally solidified, columnar grain nickel-base alloy (CM 186 LC: containing 3% Re) for a variety of turbine engine applications. A range of critical properties of these alloys is reviewed in relation to turbine component engineering performance through engine certification testing and service experience. Industrial turbines are now commencing to use this aero developed turbine technology in both small and large frame units in addition to aero-derivative industrial engines. These applications are demanding with high reliability required for turbine airfoils out to 25,000 hours, with perhaps greater than 50% of the time spent at maximum power. Combined cycle efficiencies of large frame industrial engines is scheduled to reach 60% in the U.S. ATS programme. Application experience to a total 1.3 million engine hours and 28,000 hours individual blade set service for CMSX-4 first stage turbine blades is reviewed for a small frame industrial engine. INTRODUCTION During the last 30 years, turbine inlet temperatures have increased by about 500°C (900°F). About 70% of this increase is due to more efficient design of air cooling for turbine blades and vanes, particularly the advent of serpentine convection an

    I. Novikov and E. Semenov,Haar Series and Linear Operators

    No full text

    The best constant in the Davis inequality for the expectation of the martingale square function

    No full text

    The UMD property for musielak–orlicz spaces

    No full text
    In this paper we show that Musielak–Orlicz spaces are UMD spaces under the so-called Δ2 condition on the generalized Young function and its complemented function. We also prove that if the measure space is divisible, then a Musielak–Orlicz space has the UMD property if and only if it is reflexive. As a consequence we show that reflexive variable Lebesgue spaces Lp(·) are UMD spaces.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Analysi
    corecore