1,574 research outputs found
Precise delay measurement through combinatorial logic
A high resolution circuit and method for facilitating precise measurement of on-chip delays for FPGAs for reliability studies. The circuit embeds a pulse generator on an FPGA chip having one or more groups of LUTS (the "LUT delay chain"), also on-chip. The circuit also embeds a pulse width measurement circuit on-chip, and measures the duration of the generated pulse through the delay chain. The pulse width of the output pulse represents the delay through the delay chain without any I/O delay. The pulse width measurement circuit uses an additional asynchronous clock autonomous from the main clock and the FPGA propagation delay can be displayed on a hex display continuously for testing purposes
Scanning Microwave Microscopy of Vital Mitochondria in Respiration Buffer
We demonstrate imaging using scanning microwave microscopy (SMM) of vital
mitochondria in respiration buffer. The mitochondria are isolated from cultured
HeLa cells and tethered to a solid graphene support. The mitochondria are kept
vital (alive) using a respiration buffer, which provides nutrients to sustain
the Krebs cycle. We verify that the mitochondria are "alive" by measuring the
membrane potential using a voltage sensitive fluorescent dye (TMRE). The
organelles are measured capacitively at 7 GHz. Several technical advances are
demonstrated which enable this work: 1) The SMM operates in an
electrophysiologically relevant liquid (hence conducting) environment; 2) The
SMM operates in tapping mode, averaging the microwave reflection measurement
over many tapping periods; 3) A tuned reflectometer enables increased
sensitivity; 4) Variable frequencies up to 18 GHz are used; 5) In contrast with
traditional matching/resonant methods that exhibit high quality factor that
fail in the presence of liquids, interferometric/tuned reflectometer gives the
possibility to adjust the quality factor or sensitivity even in the presence of
the liquid.Comment: Accepted for publication in IMS 201
Recommended from our members
Effects of flanking sequences and cellular context on subcellular behavior and pathology of mutant HTT
Huntington’s disease (HD) is caused by an expansion of a poly glutamine (polyQ) stretch in the huntingtin protein (HTT) that is necessary to cause pathology and formation of HTT aggregates. Here we ask whether expanded polyQ is sufficient to cause pathology and aggregate formation. By addressing the sufficiency question, one can identify cellular processes and structural parameters that influence HD pathology and HTT subcellular behavior (i.e. aggregation state and subcellular location). Using Drosophila, we compare the effects of expressing mutant full-length human HTT (fl-mHTT) to the effects of mutant human HTTexon1 and to two commonly used synthetic fragments, HTT171 and shortstop (HTT118). Expanded polyQ alone is not sufficient to cause inclusion formation since full-length HTT and HTTex1 with expanded polyQ are both toxic although full-length HTT remains diffuse while HTTex1 forms inclusions. Further, inclusions are not sufficient to cause pathology since HTT171-120Q forms inclusions but is benign and co-expression of HTT171-120Q with non-aggregating pathogenic fl-mHTT recruits fl-mHTT to aggregates and rescues its pathogenicity. Additionally, the influence of sequences outside the expanded polyQ domain is revealed by finding that small modifications to the HTT118 or HTT171 fragments can dramatically alter their subcellular behavior and pathogenicity. Finally, mutant HTT subcellular behavior is strongly modified by different cell and tissue environments (e.g. fl-mHTT appears as diffuse nuclear in one tissue and diffuse cytoplasmic in another but toxic in both). These observations underscore the importance of cellular and structural context for the interpretation and comparison of experiments using different fragments and tissues to report the effects of expanded polyQ
A study of blood contamination of Siqveland matrix bands
AIMS To use a sensitive forensic test to measure blood contamination of used Siqveland matrix bands following routine cleaning and sterilisation procedures in general dental practice. MATERIALS AND METHODS: Sixteen general dental practices in the West of Scotland participated. Details of instrument cleaning procedures were recorded for each practice. A total of 133 Siqveland matrix bands were recovered following cleaning and sterilisation and were examined for residual blood contamination by the Kastle-Meyer test, a well-recognised forensic technique. RESULTS: Ultrasonic baths were used for the cleaning of 62 (47%) bands and retainers and the remainder (53%) were hand scrubbed prior to autoclaving. Overall, 21% of the matrix bands and 19% of the retainers gave a positive Kastle-Meyer test, indicative of residual blood contamination, following cleaning and sterilisation. In relation to cleaning method, 34% of hand-scrubbed bands and 32% of hand-scrubbed retainers were positive for residual blood by the Kastle-Meyer test compared with 6% and 3% respectively of ultrasonically cleaned bands and retainers (P less than 0.001). CONCLUSIONS: If Siqveland matrix bands are re-processed in the assembled state, then adequate pre-sterilisation cleaning cannot be achieved reliably. Ultrasonic baths are significantly more effective than hand cleaning for these items of equipment
The Local Effects of Cosmological Variations in Physical 'Constants' and Scalar Fields I. Spherically Symmetric Spacetimes
We apply the method of matched asymptotic expansions to analyse whether
cosmological variations in physical `constants' and scalar fields are
detectable, locally, on the surface of local gravitationally bound systems such
as planets and stars, or inside virialised systems like galaxies and clusters.
We assume spherical symmetry and derive a sufficient condition for the local
time variation of the scalar fields that drive varying constants to track the
cosmological one. We calculate a number of specific examples in detail by
matching the Schwarzschild spacetime to spherically symmetric inhomogeneous
Tolman-Bondi metrics in an intermediate region by rigorously construction
matched asymptotic expansions on cosmological and local astronomical scales
which overlap in an intermediate domain. We conclude that, independent of the
details of the scalar-field theory describing the varying `constant', the
condition for cosmological variations to be measured locally is almost always
satisfied in physically realistic situations. The proof of this statement
provides a rigorous justification for using terrestrial experiments and solar
system observations to constrain or detect any cosmological time variations in
the traditional `constants' of Nature.Comment: 30 pages, 3 figures; corrected typo
Mechanism of Vanadium Leaching during Surface Weathering of Basic Oxygen Furnace Steel Slag Blocks: A Microfocus X-ray Absorption Spectroscopy and Electron Microscopy Study
© 2017 American Chemical Society. Basic oxygen furnace (BOF) steelmaking slag is enriched in potentially toxic V which may become mobilized in high pH leachate during weathering. BOF slag was weathered under aerated and air-excluded conditions for 6 months prior to SEM/EDS and μXANES analysis to determine V host phases and speciation in both primary and secondary phases. Leached blocks show development of an altered region in which free lime and dicalcium silicate phases were absent and Ca-Si-H was precipitated (CaCO 3 was also present under aerated conditions). μXANES analyses show that V was released to solution as V(V) during dicalcium silicate dissolution and some V was incorporated into neo-formed Ca-Si-H. Higher V concentrations were observed in leachate under aerated conditions than in the air-excluded leaching experiment. Aqueous V concentrations were controlled by Ca 3 (VO 4 ) 2 solubility, which demonstrate an inverse relationship between Ca and V concentrations. Under air-excluded conditions Ca concentrations were controlled by dicalcium silicate dissolution and Ca-Si-H precipitation, leading to relatively high Ca and correspondingly low V concentrations. Formation of CaCO 3 under aerated conditions provided a sink for aqueous Ca, allowing higher V concentrations limited by kinetic dissolution rates of dicalcium silicate. Thus, V release may be slowed by the precipitation of secondary phases in the altered region, improving the prospects for slag reuse
TESS Data Release Notes: Sector 17, DR24
This release note discusses the science data products produced by the Science Processing Operations Center at Ames Research Center from Sector 17 observations made with the TESS spacecraft and cameras as a means to document instrument performance and data characteristics
TESS Data Release Notes: Sector 18 DR25
This release note discusses the science data products produced by the Science Processing Operations Center at Ames Research Center from Sector 18 observations made with the TESS spacecraft and cameras as a means to document instrument performance and data characteristics
- …