7 research outputs found

    Contrasting 5' and 3' Evolutionary Histories and Frequent Evolutionary Convergence in Meis/hth Gene Structures

    Get PDF
    Organisms show striking differences in genome structure; however, the functional implications and fundamental forces that govern these differences remain obscure. The intron–exon organization of nuclear genes is involved in a particularly large variety of structures and functional roles. We performed a 22-species study of Meis/hth genes, intron-rich homeodomain-containing transcription factors involved in a wide range of developmental processes. Our study revealed three surprising results that suggest important and very different functions for Meis intron–exon structures. First, we find unexpected conservation across species of intron positions and lengths along most of the Meis locus. This contrasts with the high degree of structural divergence found in genome-wide studies and may attest to conserved regulatory elements residing within these conserved introns. Second, we find very different evolutionary histories for the 5′ and 3′ regions of the gene. The 5′-most 10 exons, which encode the highly conserved Meis domain and homeodomain, show striking conservation. By contrast, the 3′ of the gene, which encodes several domains implicated in transcriptional activation and response to cell signaling, shows a remarkably active evolutionary history, with diverse isoforms and frequent creation and loss of new exons and splice sites. This region-specific diversity suggests evolutionary “tinkering,” with alternative splicing allowing for more subtle regulation of protein function. Third, we find a large number of cases of convergent evolution in the 3′ region, including 1) parallel losses of ancestral coding sequence, 2) parallel gains of external and internal splice sites, and 3) recurrent truncation of C-terminal coding regions. These results attest to the importance of locus-specific splicing functions in differences in structural evolution across genes, as well as to commonalities of forces shaping the evolution of individual genes along different lineages

    Amphioxus functional genomics and the origins of vertebrate gene regulation

    No full text
    Vertebrates have greatly elaborated the basic chordate body plan and evolved highly distinctive genomes that have been sculpted by two whole-genome duplications. Here we sequence the genome of the Mediterranean amphioxus (Branchiostoma lanceolatum) and characterize DNA methylation, chromatin accessibility, histone modifications and transcriptomes across multiple developmental stages and adult tissues to investigate the evolution of the regulation of the chordate genome. Comparisons with vertebrates identify an intermediate stage in the evolution of differentially methylated enhancers, and a high conservation of gene expression and its cis-regulatory logic between amphioxus and vertebrates that occurs maximally at an earlier mid-embryonic phylotypic period. We analyse regulatory evolution after whole-genome duplications, and find that-in vertebrates-over 80% of broadly expressed gene families with multiple paralogues derived from whole-genome duplications have members that restricted their ancestral expression, and underwent specialization rather than subfunctionalization. Counter-intuitively, paralogues that restricted their expression increased the complexity of their regulatory landscapes. These data pave the way for a better understanding of the regulatory principles that underlie key vertebrate innovations.This research was funded primarily by the European Research Council (ERC) under the European Union’s Horizon 2020 and Seventh Framework Program FP7 research and innovation programs (ERC-AdG-LS8-740041 to J.L.G.-S., ERC-StG-LS2-637591 to M.I., a Marie Sklodowska-Curie Grant (658521) to I.M. and a FP7/2007-2013-ERC-268513 to P.W.H.H.), the Spanish Ministerio de Economía y Competitividad (BFU2016-74961-P to J.L.G.-S., RYC-2016-20089 to I.M., BFU2014-55076-P and BFU2017-89201-P to M.I. and BFU2014-55738-REDT to J.L.G.-S, M.I. and J.R.M.-M), the ‘Centro de Excelencia Severo Ochoa 2013-2017’(SEV-2012-0208), the ‘Unidad de Excelencia María de Maetzu 2017-2021’(MDM-2016-0687), the People Program (Marie Curie Actions) of the European Union’s Seventh Framework Program FP7 under REA grant agreement number 607142 (DevCom) to J.L.G.-S., and the CNRS and the ANR (ANR16-CE12-0008-01) to H.E. O.B. was supported by an Australian Research Council Discovery Early Career Researcher Award (DECRA; DE140101962). We acknowledge the support of the CERCA Programme/Generalitat de Catalunya and of the Spanish Ministry of Economy, Industry and Competitiveness (MEIC) to the EMBL partnership. Additional sources of funding for all authors are listed in Supplementary Information

    ExOrthist: a tool to infer exon orthologies at any evolutionary distance

    No full text
    Several bioinformatic tools have been developed for genome-wide identification of orthologous and paralogous genes. However, no corresponding tool allows the detection of exon homology relationships. Here, we present ExOrthist, a fully reproducible Nextflow-based software enabling inference of exon homologs and orthogroups, visualization of evolution of exon-intron structures, and assessment of conservation of alternative splicing patterns. ExOrthist evaluates exon sequence conservation and considers the surrounding exon-intron context to derive genome-wide multi-species exon homologies at any evolutionary distance. We demonstrate its use in different evolutionary scenarios: whole genome duplication in frogs and convergence of Nova-regulated splicing networks ( https://github.com/biocorecrg/ExOrthist).The research has been funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (ERC-StG-LS2-637591 to MI), the Spanish Ministerio de Ciencia (BFU2017-89201-P to MI, including and FPI PhD fellowship to FM), the “Centro de Excelencia Severo Ochoa 2013-2017” (SEV-2012-0208), EMBO Long Term postdoctoral fellowship (ALTF 1505-2015 to YM), and Marie Skłodowska-Curie actions (MSCA) grant (705938 to YM). We acknowledge the support of the CERCA Programme/Generalitat de Catalunya and of the Spanish Ministry of Economy, Industry and Competitiveness (MEIC) to the EMBL partnershi

    Evolution of tissue-specific expression of ancestral genes across vertebrates and insects

    No full text
    Data de publicació electrònica: 15-04-2024Inclou material suplementari: Supplementary Methods, Discussion, Figs. 1–12, Description of Supplementary Dataset content and References.Regulation of gene expression is arguably the main mechanism underlying the phenotypic diversity of tissues within and between species. Here we assembled an extensive transcriptomic dataset covering 8 tissues across 20 bilaterian species and performed analyses using a symmetric phylogeny that allowed the combined and parallel investigation of gene expression evolution between vertebrates and insects. We specifically focused on widely conserved ancestral genes, identifying strong cores of pan-bilaterian tissue-specific genes and even larger groups that diverged to define vertebrate and insect tissues. Systematic inferences of tissue-specificity gains and losses show that nearly half of all ancestral genes have been recruited into tissue-specific transcriptomes. This occurred during both ancient and, especially, recent bilaterian evolution, with several gains being associated with the emergence of unique phenotypes (for example, novel cell types). Such pervasive evolution of tissue specificity was linked to gene duplication coupled with expression specialization of one of the copies, revealing an unappreciated prolonged effect of whole-genome duplications on recent vertebrate evolution.This research was funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (ERC-StG-LS2-637591 and ERCCoG-LS2-101002275 to M.I.), by the Spanish Ministry of Economy and Competitiveness (BFU-2017-89201-P and PID2020-115040GB-I00 to M.I.) and by the ‘Centro de Excelencia Severo Ochoa 2013-2017’(SEV-2012-0208). F.M. holds a FPI fellowship associated with the grant BFU-2017-89201-P. Additional support for this research was provided by the Spanish MINECO (PGC2018-098427- B-I00 to D.M. and X.F.-M.), the Czech Science Foundation (22-21244S to M.N.), the Australian Research Council (grant DP200103219 to P.D.C. and F.T.) and the National Institutes of Health-NIAID (grant R21AI167849 to F.G.N.)

    The X-linked splicing regulator MBNL3 has been co-opted to restrict placental growth in eutherians

    No full text
    Understanding the regulatory interactions that control gene expression during the development of novel tissues is a key goal of evolutionary developmental biology. Here, we show that Mbnl3 has undergone a striking process of evolutionary specialization in eutherian mammals resulting in the emergence of a novel placental function for the gene. Mbnl3 belongs to a family of RNA-binding proteins whose members regulate multiple aspects of RNA metabolism. We find that, in eutherians, while both Mbnl3 and its paralog Mbnl2 are strongly expressed in placenta, Mbnl3 expression has been lost from nonplacental tissues in association with the evolution of a novel promoter. Moreover, Mbnl3 has undergone accelerated protein sequence evolution leading to changes in its RNA-binding specificities and cellular localization. While Mbnl2 and Mbnl3 share partially redundant roles in regulating alternative splicing, polyadenylation site usage and, in turn, placenta maturation, Mbnl3 has also acquired novel biological functions. Specifically, Mbnl3 knockout (M3KO) alone results in increased placental growth associated with higher Myc expression. Furthermore, Mbnl3 loss increases fetal resource allocation during limiting conditions, suggesting that location of Mbnl3 on the X chromosome has led to its role in limiting placental growth, favoring the maternal side of the parental genetic conflict.The research has been funded by the Spanish Ministerio de Ciencia (BFU2017-89201-P and PID2020-115040GB-I00 to M.I.), the ‘Centro de Excelencia Severo Ochoa 2013-2017’(SEV-2012-0208 to the Centre for Genomic Regulation), and the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA grant agreement n° 608959 to T.S

    Molecular regionalization of the developing amphioxus neural tube challenges major partitions of the vertebrate brain

    No full text
    All vertebrate brains develop following a common Bauplan defined by anteroposterior (AP) and dorsoventral (DV) subdivisions, characterized by largely conserved differential expression of gene markers. However, it is still unclear how this Bauplan originated during evolution. We studied the relative expression of 48 genes with key roles in vertebrate neural patterning in a representative amphioxus embryonic stage. Unlike nonchordates, amphioxus develops its central nervous system (CNS) from a neural plate that is homologous to that of vertebrates, allowing direct topological comparisons. The resulting genoarchitectonic model revealed that the amphioxus incipient neural tube is unexpectedly complex, consisting of several AP and DV molecular partitions. Strikingly, comparison with vertebrates indicates that the vertebrate thalamus, pretectum, and midbrain domains jointly correspond to a single amphioxus region, which we termed Di-Mesencephalic primordium (DiMes). This suggests that these domains have a common developmental and evolutionary origin, as supported by functional experiments manipulating secondary organizers in zebrafish and mice.Spanish Ministry of Economy and Competitiveness and European FEDER funds (grant number BFU2014-57516-P). To Luis Puelles and Jose Luis Ferran. European Research Council (grant number ERC-StG-LS2-637591). To Manuel Irimia. Spanish Ministry of Economy and Competitiveness (grant number SEV-2012-0208).Centro de Excelencia Severo Ochoa (to CRG, Manuel Irimia). Spanish Ministry of Economy and Competitiveness (grant number BFU2014-58908-P). To Jordi Garcia-Fernadez. Seneca Foundation, Comunidad de Murcia (grant number 19904/GERM/15). To Luis Puelles. Generalitat de Catalunya (grant number). ICREA Academia Prize to Jordi Garcia-Fernandez. Spanish Ministry of Economy and Competitiveness (grant number BFU2013-43213-P). To Paola Bovolenta. Spanish Ministry of Economy and Competitiveness (grant number BFU2014-55076-P). To Manuel Irimia. Including an FPI PhD fellowship to Laura Lopez-Blanch. Marine Alliance for Science and Technology Scotland (MASTS) (grant number). To Ildiko Somorjai

    Evolutionary recruitment of flexible Esrp-dependent splicing programs into diverse embryonic morphogenetic processes

    No full text
    Epithelial-mesenchymal interactions are crucial for the development of numerous animal structures. Thus, unraveling how molecular tools are recruited in different lineages to control interplays between these tissues is key to understanding morphogenetic evolution. Here, we study Esrp genes, which regulate extensive splicing programs and are essential for mammalian organogenesis. We find that Esrp homologs have been independently recruited for the development of multiple structures across deuterostomes. Although Esrp is involved in a wide variety of ontogenetic processes, our results suggest ancient roles in non-neural ectoderm and regulating specific mesenchymal-to-epithelial transitions in deuterostome ancestors. However, consistent with the extensive rewiring of Esrp-dependent splicing programs between phyla, most developmental defects observed in vertebrate mutants are related to other types of morphogenetic processes. This is likely connected to the origin of an event in Fgfr, which was recruited as an Esrp target in stem chordates and subsequently co-opted into the development of many novel traits in vertebrates.This work has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement No ERC-StG-LS2-637591 to M.I.), the Spanish Ministry of Economy and Competitiveness (grant BFU2014-58908P to J.G.-F, BFU2014-55076-P to M.I., and the 'Centro de Excelencia Severo Ochoa 2013-2017', SEV-2012-0208), and ICREA - Generalitat de Catalunya (Academia Prize to J.G.-F). We acknowledge the support of the CERCA Programme/Generalitat de Catalunya. D.B. held an APIF fellowship from University of Barcelona, Y.M. an EMBO Long Term postdoctoral fellowship (ALTF 1505-2015), C.R. an EMBO long-term fellowship (ALTF 1608-2014), ATM an FPI-SO fellowship
    corecore