103 research outputs found

    Habitat filtering across tree life stages in tropical forest communities

    Get PDF
    Tropical tree communities are shaped by local-scale habitat heterogeneity in the form of topographic and edaphic variation, but the life-history stage at which habitat associations develop remains poorly understood. This is due, in part, to the fact that previous studies have not accounted for the widely disparate sample sizes number of stems that result when trees are divided into size classes. We demonstrate that the observed habitat structuring of a community is directly related to the number of individuals in the community. We then compare the relative importance of habitat heterogeneity to tree community structure for saplings, juveniles and adult trees within seven large 24-50 ha tropical forest dynamics plots while controlling for sample size. Changes in habitat structuring through tree life stages were small and inconsistent among life stages and study sites. Where found, these differences were an order of magnitude smaller than the findings of previous studies that did not control for sample size. Moreover, community structure and composition were very similar among tree sub-communities of different life stages. We conclude that the structure of these tropical tree communities is established by the time trees are large enough to be included in the census 1 cm diameter at breast height, which indicates that habitat filtering occurs during earlier life stages. © 2013 The Authors Published by the Royal Society. All rights reserved

    Phylogenetic turnover along local environmental gradients in tropical forest communities

    Get PDF
    © 2016, Springer-Verlag Berlin Heidelberg. While the importance of local-scale habitat niches in shaping tree species turnover along environmental gradients in tropical forests is well appreciated, relatively little is known about the influence of phylogenetic signal in species’ habitat niches in shaping local community structure. We used detailed maps of the soil resource and topographic variation within eight 24–50 ha tropical forest plots combined with species phylogenies created from the APG III phylogeny to examine how phylogenetic beta diversity (indicating the degree of phylogenetic similarity of two communities) was related to environmental gradients within tropical tree communities. Using distance-based redundancy analysis we found that phylogenetic beta diversity, expressed as either nearest neighbor distance or mean pairwise distance, was significantly related to both soil and topographic variation in all study sites. In general, more phylogenetic beta diversity within a forest plot was explained by environmental variables this was expressed as nearest neighbor distance versus mean pairwise distance (3.0–10.3 % and 0.4–8.8 % of variation explained among plots, respectively), and more variation was explained by soil resource variables than topographic variables using either phylogenetic beta diversity metric. We also found that patterns of phylogenetic beta diversity expressed as nearest neighbor distance were consistent with previously observed patterns of niche similarity among congeneric species pairs in these plots. These results indicate the importance of phylogenetic signal in local habitat niches in shaping the phylogenetic structure of tropical tree communities, especially at the level of close phylogenetic neighbors, where similarity in habitat niches is most strongly preserved

    15N in tree rings as a bio-indicator of changing nitrogen cycling in tropical forests: an evaluation at three sites using two sampling methods

    Get PDF
    Anthropogenic nitrogen deposition is currently causing a more than twofold increase of reactive nitrogen input over large areas in the tropics. Elevated N-15 abundance (delta N-15) in the growth rings of some tropical trees has been hypothesized to reflect an increased leaching of N-15-depleted nitrate from the soil, following anthropogenic nitrogen deposition over the last decades. To find further evidence for altered nitrogen cycling in tropical forests, we measured long-term delta N-15 values in trees from Bolivia, Cameroon, and Thailand. We used two different sampling methods. In the first, wood samples were taken in a conventional way: from the pith to the bark across the stem of 28 large trees (the "radial" method). In the second, delta N-15 values were compared across a fixed diameter (the "fixed-diameter" method). We sampled 400 trees that differed widely in size, but measured delta N-15 in the stem around the same diameter (20 cm dbh) in all trees. As a result, the growth rings formed around this diameter differed in age and allowed a comparison of delta N-15 values over time with an explicit control for potential size-effects on delta N-15 values. We found a significant increase of tree-ring delta N-15 across the stem radius of large trees from Bolivia and Cameroon, but no change in tree-ring delta N-15 values over time was found in any of the study sites when controlling for tree size. This suggests that radial trends of delta N-15 values within trees reflect tree ontogeny (size development). However, for the trees from Cameroon and Thailand, a low statistical power in the fixed-diameter method prevents to conclude this with high certainty. For the trees from Bolivia, statistical power in the fixed-diameter method was high, showing that the temporal trend in tree-ring delta N-15 values in the radial method is primarily caused by tree ontogeny and unlikely by a change in nitrogen cycling. We therefore stress to account for tree size before tree-ring delta N-15 values can be properly interpreted

    Savannahs of Asia: Antiquity, biogeography, and an uncertain future

    Get PDF
    The savannahs of Asia remain locally unrecognized as distinctive ecosystems, and continue to be viewed as degraded forests or seasonally dry tropical forests. These colonial-era legacies are problematic, because they fail to recognize the unique diversity of Asian savannahs and the critical roles of fire and herbivory in maintaining ecosystem health and diversity. In this review, we show that: the palaeo-historical evidence suggests that the savannahs of Asia have existed for at least 1 million years, long before widespread landscape modification by humans; savannah regions across Asia have levels of C4 grass endemism and diversity that are consistent with area-based expectations for non-Asian savannahs; there are at least three distinct Asian savannah communities, namely deciduous broadleaf savannahs, deciduous fine-leafed and spiny savannahs and evergreen pine savannahs, with distinct functional ecologies consistent with fire- and herbivory-driven community assembly. Via an analysis of savannah climate domains on other continents, we map the potential extent of savannahs across Asia. We find that the climates of African savannahs provide the closest analogues for those of Asian deciduous savannahs, but that Asian pine savannahs occur in climates different to any of the savannahs in the southern continents. Finally, we review major threats to the persistence of savannahs in Asia, including the mismanagement of fire and herbivory, alien woody encroachment, afforestation policies and future climate uncertainty associated with the changing Asian monsoon. Research agendas that target these issues are urgently needed to manage and conserve these ecosystems. This article is part of the themed issue ‘Tropical grassy biomes: linking ecology, human use and conservation’

    Nonrandom processes maintain diversity in tropical forests

    Get PDF
    An ecological community\u27s species diversity tends to erode through time as a result of stochastic extinction, competitive exclusion, and unstable host-enemy dynamics. This erosion of diversity can be prevented over the short term if recruits are highly diverse as a result of preferential recruitment of rare species or, alternatively, if rare species survive preferentially, which increases diversity as the ages of the individuals increase. Here, we present census data from seven New and Old World tropical forest dynamics plots that all show the latter pattern. Within local areas, the trees that survived were as a group more diverse than those that were recruited or those that died. The larger (and therefore on average older) survivors were more diverse within local areas than the smaller survivors. When species were rare in a local area, they had a higher survival rate than when they were common, resulting in enrichment for rare species and increasing diversity with age and size class in these complex ecosystems
    • …
    corecore