20,790 research outputs found

    Stability of ferromagnetism in the half-metallic pnictides and similar compounds: A first-principles study

    Full text link
    Based on first-principles electron structure calculations and employing the frozen-magnon approximation we study the exchange interactions in a series of transition-metal binary alloys crystallizing in the zinc-blende structure and calculate the Curie temperature within both the mean-field approximation (MFA) and random-phase approximation (RPA). We study two Cr compounds, CrAs and CrSe, and four Mn compounds: MnSi, MnGe, MnAs and MnC. MnC, MnSi and MnGe are isovalent to CrAs and MnAs is isoelectronic with CrSe. Ferromagnetism is particular stable for CrAs, MnSi and MnGe: All three compounds show Curie temperatures around 1000 K. On the other hand, CrSe and MnAs show a tendency to antiferromagnetism when compressing the lattice. In MnC the half-metallic gap is located in the majority-spin channel contrary to the other five compounds. The large half-metallic gaps, very high Curie temperatures, the stability of the ferromagnetism with respect to the variation of the lattice parameter and a coherent growth on semiconductors make MnSi and CrAs most promising candidates for the use in spintronics devises.Comment: 17 pages, 6 figure

    Nonlinear normal modes of a two degree of freedom oscillator with a bilateral elastic stop

    Get PDF
    A study of the non linear modes of a two degree of freedom mechanical system with bilateral elastic stop is considered. The issue related to the non-smoothness of the impact force is handled through a regularization technique. In order to obtain the Nonlinear Normal Mode (NNM), the harmonic balance method with a large number of harmonics, combined with the asymptotic numerical method, is used to solve the regularized problem. These methods are present in the software "package" MANLAB. The results are validated from periodic orbits obtained analytically in the time domain by direct integration of the non regular problem. The two NNMs starting respectively from the two linear normal modes of the associated underlying linear system are discussed. The energy-frequency plot is used to present a global vision of the behavior of the modes. The dynamics of the modes are also analyzed comparing each periodic orbits and modal lines. The first NNM shows an elaborate dynamics with the occurrence of multiple impacts per period. On the other hand, the second NNM presents a more simple dynamics with a localization of the displacement on the first mass

    Tomographic approach to the violation of Bell's inequalities for quantum states of two qutrits

    Full text link
    The tomographic method is employed to investigate the presence of quantum correlations in two classes of parameter-dependent states of two qutrits. The violation of some Bell's inequalities in a wide domain of the parameter space is shown. A comparison between the tomographic approach and a recent method elaborated by Wu, Poulsen and Molmer shows the better adequacy of the former method with respect to the latter one.Comment: 9 pages, 4 figure

    Ensinar Ciência no pré-escolar. Contributos para aprendizagens de outras áreas/domínios curriculares. Relato de experiências realizadas em jardins de infância

    Get PDF
    O ensino das ciências deve começar no jardim de infância, através de uma abordagem transversal em que se evidencia o papel das ciências e em particular das actividades experimentais, como contexto privilegiado para o desenvolvimento das outras áreas do currículo. Na comunicação oral serão apresentados diversos exemplos de actividades científicas realizadas em salas de jardim de infância, em que se privilegia uma abordagem transversal dos conteúdos, mobilizadora de conhecimentos, capacidades e atitudes de diferentes áreas e domínios (matemática, comunicação, expressões plástica e dramática, formação pessoal e social)

    Improvements on analytic modelling of stellar spots

    Full text link
    In this work we present the solution of the stellar spot problem using the Kelvin-Stokes theorem. Our result is applicable for any given location and dimension of the spots on the stellar surface. We present explicitely the result up to the second degree in the limb darkening law. This technique can be used to calculate very efficiently mutual photometric effects produced by eclipsing bodies occulting stellar spots and to construct complex spot shapes.Comment: Resubmitted to MNRAS after accounting for minor comments of second review, 9 pages, 5 figures, software available at http://eduscisoft.com/KSINT

    A Hidden Twelve-Dimensional SuperPoincare Symmetry In Eleven Dimensions

    Full text link
    First, we review a result in our previous paper, of how a ten-dimensional superparticle, taken off-shell, has a hidden eleven-dimensional superPoincare symmetry. Then, we show that the physical sector is defined by three first-class constraints which preserve the full eleven-dimensional symmetry. Applying the same concepts to the eleven dimensional superparticle, taken off-shell, we discover a hidden twelve dimensional superPoincare symmetry that governs the theory.Comment: 13 page

    Orbital moment of a single Co atom on a Pt(111) surface - a view from correlated band theory

    Full text link
    The orbital magnetic moment of a Co adatom on a Pt(111) surface is calculated in good agreement with experimental data making use of the LSDA+U method. It is shown that both electron correlation induced orbital polarization and structural relaxation play essential roles in orbital moment formation. The microscopic origins of the orbital moment enhancement are discussed

    A study of atom localization in an optical lattice by analysis of the scattered light

    Full text link
    We present an experimental study of a four beam optical lattice using the light scattered by the atoms in the lattice. We use both intensity correlations and observations of the transient behavior of the scattering when the lattice is suddenly switched on. We compare results for 3 different configurations of the optical lattice. We create situations in which the Lamb-Dicke effect is negligible and show that, in contrast to what has been stated in some of the literature, the damping rate of the 'coherent' atomic oscillations can be much smaller than the inelastic photon scattering rate.Comment: An old pape
    • …
    corecore