157 research outputs found
Plant Signalling: Calcium First and Second
AbstractThe cloning of a receptor protein for extracellular calcium that signals via cytosolic calcium oscillations in stomatal guard cells of Arabidopsis has provided definitive evidence that calcium ions, delivered via the cell walls or apoplast, can play a ‘first messenger’ role in plants
Combining Policies to Reduce Agricultural Runoff in Delaware
Noxontown Pond is a small part of Delaware’s rich history. In 1730, Thomas Noxon damned the head of the Appoquinimink to form Noxontown and build his mill. The small village of Noxontown was once used as the headquarters for Caesar Rodney, a signer of the Declaration of Independence. Yet, in recent decades Noxontown pond has struggled. An EPA study from the 1970’s quotes the pond’s trouble with high nutrient levels. Large algae blooms have become regular in the summers and have diminished fish populations. As the First State, Delaware has been a leader since the founding of this country and should now take on a responsibility as a new type of leader.
Image Citation:
Image from Google Earth Prohttps://digitalworks.union.edu/eco228_2019/1000/thumbnail.jp
Connecting automatic parameter tuning, genetic programming as a hyper-heuristic and genetic improvement programming
Automatically designing algorithms has long been a dream of computer scientists. Early attempts which generate computer programs from scratch, have failed to meet this goal. However, in recent years there have been a number of different technologies with an alternative goal of taking existing programs and attempting to improvement them. These methods form a continuum of methodologies, from the “limited” ability to change (for example only the parameters) to the “complete” ability to change the whole program. These include; automatic parameter tuning (APT), using GP as a hyper-heuristic (GPHH) to automatically design algorithms, and GI, which we will now briefly review. Part of research is building links between existing work, and the aim of this paper is to bring together these currently separate approache
GP vs GI: if you can't beat them, join them
Genetic Programming (GP) has been criticized for targeting irrelevant problems [12], and is also true of the wider machine learning community [11]. which has become detached from the source of the data it is using to drive the field forward. However, recently GI provides a fresh perspective on automated programming. In contrast to GP, GI begins with existing software, and therefore immediately has the aim of tackling real software. As evolution is the main approach to GI to manipulating programs, this connection with real software should persuade the GP community to confront the issues around what it originally set out to tackle i.e. evolving real software
Evals is not enough: why we should report wall-clock time
Have you ever noticed that your car never achieves the fuel economy claimed by the manufacturer? Does this seem unfair? Unscientific? Would you like the same situation to occur in Genetic Improvement? Comparison will always be difficult [9], however, guidelines have been discussed [3, 5, 4]. With two GP [8] approaches, comparing the number of evaluations of the fitness function is reasonably fair. This means you are comparing the GP systems, and not how well they are implemented, how fast the language is. However, the situation with GI [6, 1] is unique. With GI we will typically compare systems which are applied to the same application written in the same language (i.e. a GI systems targeted at Java, may not even be applied to C). Thus, wall-clock time becomes more relevant. Thus, this paper asks if reporting number of evaluations is enough, or if wall-clock time is also important, particularly in the context of GI. It argues that reporting time is even more important when doing GI when compared to traditional GP
Effects of Increasing Seawater Carbon Dioxide Concentrations on Chain Formation of the Diatom Asterionellopsis glacialis
Diatoms can occur as single cells or as chain-forming aggregates. These two strategies affect buoyancy, predator evasion, light absorption and nutrient uptake. Adjacent cells in chains establish connections through various processes that determine strength and flexibility of the bonds, and at distinct cellular locations defining colony structure. Chain length has been found to vary with temperature and nutrient availability as well as being positively correlated with growth rate. However, the potential effect of enhanced carbon dioxide (CO2) concentrations and consequent changes in seawater carbonate chemistry on chain formation is virtually unknown. Here we report on experiments with semi-continuous cultures of the freshly isolated diatom Asterionellopsis glacialis grown under increasing CO2 levels ranging from 320 to 3400 mu atm. We show that the number of cells comprising a chain, and therefore chain length, increases with rising CO2 concentrations. We also demonstrate that while cell division rate changes with CO2 concentrations, carbon, nitrogen and phosphorus cellular quotas vary proportionally, evident by unchanged organic matter ratios. Finally, beyond the optimum CO2 concentration for growth, carbon allocation changes from cellular storage to increased exudation of dissolved organic carbon. The observed structural adjustment in colony size could enable growth at high CO2 levels, since longer, spiral-shaped chains are likely to create microclimates with higher pH during the light period. Moreover increased chain length of Asterionellopsis glacialis may influence buoyancy and, consequently, affect competitive fitness as well as sinking rates. This would potentially impact the delicate balance between the microbial loop and export of organic matter, with consequences for atmospheric carbon dioxide
An Extracellular Polysaccharide-Rich Organic Layer Contributes to Organization of the Coccosphere in Coccolithophores
This is the final version. Available from Frontiers Media via the DOI in this record.Coccolithophores are globally abundant marine microalgae characterized by their ability to form calcite platelets (coccoliths). The coccoliths are produced internally in a Golgi-derived vesicle. Mature coccoliths are extruded from the cell to form a protective covering on the cell surface, known as the coccosphere. Current evidence indicates that calcite precipitation in the coccolith vesicle (CV) is modulated by coccolith-associated polysaccharides (CAPs). Whilst previous research into CAPs has focussed on their roles in calcite precipitation within the CV, little is known of their extracellular roles. Using fluorescent lectins, we visualize the extracellular polysaccharide-rich organic layer associated with external coccoliths and demonstrate that it differs between species in structure and composition. Biochemical analysis of polysaccharide extracted from coccoliths indicated substantial differences between species in monosaccharide composition and uronic acid content. In Coccolithus braarudii our studies indicate that polysaccharide-rich material is extruded with the coccoliths, where it plays a role in the adhesion of the coccoliths to the cell surface and contributes to the overall organization of the coccosphere. Together, these results highlight the important extracellular roles of CAPs and their contribution to the dynamic nature of the coccosphere.The authors acknowledge funding from NERC SPITFIRE DTP studentship to CW. GW and CB acknowledge support from NERC (NE/N011708/1) and the European Research Council (ERC-ADG 670390). CW was additionally supported by the Gillings Graduate Exchange Programme (University of Southampton/University of North Carolina Wilmington). AT acknowledges NSF support (NSFGEO-NERC-1638838)
Sr in coccoliths of Scyphosphaera apsteinii: Partitioning behavior and role in coccolith morphogenesis
Coccolithophores are important contributors to global calcium carbonate through their species-specific production of calcite coccoliths. Nannofossil coccolith calcite remains an important tool for paleoreconstructions through geochemical analysis of isotopic and trace element incorporation including Sr, which is a potential indicator of past surface ocean temperature and productivity. Scyphosphaera apsteinii (Zygodiscales) exhibits an unusually high Sr/Ca ratio and correspondingly high partitioning coefficient (DSr = 2.5) in their two morphologically distinct types of coccoliths: flat muroliths and barrel-like lopadoliths. Whether or not this reflects mechanistic differences in calcification compared to other coccolithophores is unknown. We therefore examined the possible role of Sr in S. apsteinii calcification by growing cells in deplete (0.33 mmol/mol Sr/Ca), ambient (9 mmol/mol Sr/Ca), and higher than ambient Sr conditions (36 and 72 mmol/mol Sr/Ca). The effects on growth, quantum efficiency of photosystem II (Fv/Fm), coccolith morphology, and calcite DSr were evaluated. No effect on S. apsteinii growth rate or Fv/Fm was observed when cells were grown in Sr/Ca between 0.33–36 mmol/mol. However, at 72 mmol/mol Sr/Ca growth rate was significantly reduced, although Fv/Fm was unaffected. Reducing the Sr/Ca from ambient (9 mmol/mol) did not significantly alter the frequency of malformed and aberrant muroliths and lopadoliths, but at higher than ambient Sr/Ca conditions coccolith morphology was significantly disrupted. This implies that Sr is not a critical determining factor in normal coccolith calcite morphology in this dimorphic species. Using energy dispersive spectroscopy (EDS) we observed an increase in [Sr] and decrease in DSr of coccoliths as the Sr/Ca of the growth medium increased. Interestingly, muroliths had significantly lower Sr/Ca than lopadoliths at ambient and elevated [Sr], and lopadolith tips had lower Sr than bases in ambient conditions. In summary, the Sr fractionation behavior of S. apsteinii is distinct from other coccolithophores because of an unusually high DSr and inter- and intra-coccolith variability in Sr/Ca. These observations could be explained by mechanistic differences in the selectivity of the Ca2+ transport pathway or in the Sr-and Ca-binding capacity of organic components, such as polysaccharides associated with coccolithogenesis
- …