305 research outputs found

    Parametric phenomena of the particle dynamics in a periodic gravitational wave field

    Get PDF
    We establish exactly solvable models for the motion of neutral particles, electrically charged point and spin particles (U(1) symmetry), isospin particles (SU(2) symmetry), and particles with color charges (SU(3) symmetry) in a gravitational wave background. Special attention is devoted to parametric effects induced by the gravitational field. In particular, we discuss parametric instabilities of the particle motion and parametric oscillations of the vectors of spin, isospin, and color charge.Comment: 26 pages, to be published in J. Math. Phy

    Addressing chemical pollution in biodiversity research

    Get PDF
    Climate change, biodiversity loss, and chemical pollution are planetary-scale emergencies requiring urgent mitigation actions. As these “triple crises” are deeply interlinked, they need to be tackled in an integrative manner. However, while climate change and biodiversity are often studied together, chemical pollution as a global change factor contributing to worldwide biodiversity loss has received much less attention in biodiversity research so far. Here, we review evidence showing that the multifaceted effects of anthropogenic chemicals in the environment are posing a growing threat to biodiversity and ecosystems. Therefore, failure to account for pollution effects may significantly undermine the success of biodiversity protection efforts. We argue that progress in understanding and counteracting the negative impact of chemical pollution on biodiversity requires collective efforts of scientists from different disciplines, including but not limited to ecology, ecotoxicology, and environmental chemistry. Importantly, recent developments in these fields have now enabled comprehensive studies that could efficiently address the manifold interactions between chemicals and ecosystems. Based on their experience with intricate studies of biodiversity, ecologists are well equipped to embrace the additional challenge of chemical complexity through interdisciplinary collaborations. This offers a unique opportunity to jointly advance a seminal frontier in pollution ecology and facilitate the development of innovative solutions for environmental protection

    Structure and dynamics in protic ionic liquids: a combined optical Kerr-effect and dielectric relaxation spectroscopy study

    Get PDF
    The structure and dynamics of ionic liquids (ILs) are unusual due to the strong interactions between the ions and counter ions. These microscopic properties determine the bulk transport properties critical to applications of ILs such as advanced fuel cells. The terahertz dynamics and slower relaxations of simple alkylammonium nitrate protic ionic liquids (PILs) are here studied using femtosecond optical Kerr-effect spectroscopy, dielectric relaxation spectroscopy, and terahertz time-domain spectroscopy. The observed dynamics give insight into more general liquid behaviour while comparison with glass-forming liquids reveals an underlying power-law decay and relaxation rates suggest supramolecular structure and nanoscale segregation

    Aconitate decarboxylase 1 participates in the control of pulmonary Brucella infection in mice

    Get PDF
    Brucellosis is one of the most widespread bacterial zoonoses worldwide. Here, our aim was to identify the effector mechanisms controlling the early stages of intranasal infection with Brucella in C57BL/6 mice. During the first 48 hours of infection, alveolar macrophages (AMs) are the main cells infected in the lungs. Using RNA sequencing, we identified the aconitate decarboxylase 1 gene ( Acod1 ;also known as Immune responsive gene 1), as one of the genes most upregulated in murine AMs in response to B .melitensis infection at 24 hours post-infection. Upregulation of Acod1 was confirmed by RT-qPCR in lungs infected with B .melitensis and B .abortus .We observed that Acod1 -/- C57BL/6 mice display a higher bacterial load in their lungs than wild-type (wt) mice following B .melitensis or B .abortus infection, demonstrating that Acod1 participates in the control of pulmonary Brucella infection. The ACOD1 enzyme is mostly produced in mitochondria of macrophages, and converts cis-aconitate, a metabolite in the Krebs cycle, into itaconate. Dimethyl itaconate (DMI), a chemically-modified membrane permeable form of itaconate, has a dose-dependent inhibitory effect on Brucella growth in vitro .Interestingly, structural analysis suggests the binding of itaconate into the binding site of B .abortus isocitrate lyase. DMI does not inhibit multiplication of the isocitrate lyase deletion mutant Δ aceA B .abortus in vitro .Finally, we observed that, unlike the wt strain, the Δ aceA B .abortus strain multiplies similarly in wt and Acod1 -/- C57BL/6 mice. These data suggest that bacterial isocitrate lyase might be a target of itaconate in AMs.info:eu-repo/semantics/publishe

    Electron spin polarization in realistic trajectories around the magnetic node of two counter-propagating, circularly polarized, ultra-intense lasers

    Get PDF
    It has recently been suggested that two counter-propagating, circularly polarized, ultra-intense lasers can induce a strong electron spin polarization at the magnetic node of the electromagnetic field that they setup (Del Sorbo et al 2017 Phys. Rev. A 96 043407). We confirm these results by considering a more sophisticated description that integrates over realistic trajectories. The electron dynamics is weakly affected by the variation of power radiated due to the spin polarization. The degree of spin polarization differs by approximately 5% if considering electrons initially at rest or already in a circular orbit. The instability of trajectories at the magnetic node induces a spin precession associated with the electron migration that establishes an upper temporal limit to the polarization of the electron population of about one laser period

    Addressing chemical pollution in biodiversity research

    Get PDF
    Climate change, biodiversity loss, and chemical pollution are planetary-scale emergencies requiring urgent mitigation actions. As these "triple crises" are deeply interlinked, they need to be tackled in an integrative manner. However, while climate change and biodiversity are often studied together, chemical pollution as a global change factor contributing to worldwide biodiversity loss has received much less attention in biodiversity research so far. Here, we review evidence showing that the multifaceted effects of anthropogenic chemicals in the environment are posing a growing threat to biodiversity and ecosystems. Therefore, failure to account for pollution effects may significantly undermine the success of biodiversity protection efforts. We argue that progress in understanding and counteracting the negative impact of chemical pollution on biodiversity requires collective efforts of scientists from different disciplines, including but not limited to ecology, ecotoxicology, and environmental chemistry. Importantly, recent developments in these fields have now enabled comprehensive studies that could efficiently address the manifold interactions between chemicals and ecosystems. Based on their experience with intricate studies of biodiversity, ecologists are well equipped to embrace the additional challenge of chemical complexity through interdisciplinary collaborations. This offers a unique opportunity to jointly advance a seminal frontier in pollution ecology and facilitate the development of innovative solutions for environmental protection

    Tissue Doppler echocardiography – A case of right tool, wrong use

    Get PDF
    BACKGROUND: The developments in echocardiography or ultrasound cardiography (UCG) have improved our clinical capabilities. However, advanced hardware and software capabilities have resulted in UCG facilities of dubious clinical benefits. Is tissue Doppler echocardiography (TDE) is one such example? PRESENTATION OF THE HYPOTHESIS: TDE has been touted as advancement in the field of echocardiography. The striking play of colors, impressive waveforms and the seemingly accurate velocity values could be deceptive. TDE is a clear case of inappropriate use of technology. TESTING THE HYPOTHESIS: To understand this, a comparison between flow Doppler and tissue Doppler is made. To make clinically meaningful velocity measurements with Doppler, we need prior knowledge of the line of motion. This is possible in blood flow but impossible in the complex myocardial motion. The qualitative comparison makes it evident that Doppler is best suited for flow studies. IMPLICATIONS OF THE HYPOTHESIS: As of now TDE is going backwards using an indirect method when direct methods are better. The work on TDE at present is only debatable 'research and publication' material and do not translate into tangible clinical benefits. There are several advances like curved M-mode, strain rate imaging and tissue tracking in TDE. However these have been disappointing. This is due to the basic flaw in the application of the principles of Doppler. Doppler is best suited for flow studies and applying it to tissue motion is illogical. All data obtained by TDE is scientifically incorrect. This makes all the published papers on the subject flawed. Making diagnostic decisions based on this faulty application of technology would be unacceptable to the scientific cardiologist

    Positioning aquatic animals with acoustic transmitters

    Get PDF
    Geolocating aquatic animals with acoustic tags has been ongoing for decades, relying on the detection of acoustic signals at multiple receivers with known positions to calculate a 2D or 3D position, and ultimately recreate the path of an aquatic animal from detections at fixed stations.This method of underwater geolocation is evolving with new software and hardware options available to help investigators design studies and calculate positions using solvers based predominantly on time-difference-of-arrival and time-of-arrival.We provide an overview of the considerations necessary to implement positioning in aquatic acoustic telemetry studies, including how to design arrays of receivers, test performance, synchronize receiver clocks and calculate positions from the detection data. We additionally present some common positioning algorithms, including both the free open-source solvers and the 'black-box' methods provided by some manufacturers for calculating positions.This paper is the first to provide a comprehensive overview of methods and considerations for designing and implementing better positioning studies that will support users, and encourage further knowledge advances in aquatic systems
    • …
    corecore