1,843 research outputs found

    Theory and design of Inx_{x}Ga1x_{1-x}As1y_{1-y}Biy_{y} mid-infrared semiconductor lasers: type-I quantum wells for emission beyond 3 μ\mum on InP substrates

    Get PDF
    We present a theoretical analysis and optimisation of the properties and performance of mid-infrared semiconductor lasers based on the dilute bismide alloy Inx_{x}Ga1x_{1-x}As1y_{1-y}Biy_{y}, grown on conventional (001) InP substrates. The ability to independently vary the epitaxial strain and emission wavelength in this quaternary alloy provides significant scope for band structure engineering. Our calculations demonstrate that structures based on compressively strained Inx_{x}Ga1x_{1-x}As1y_{1-y}Biy_{y} quantum wells (QWs) can readily achieve emission wavelengths in the 3 -- 5 μ\mum range, and that these QWs have large type-I band offsets. As such, these structures have the potential to overcome a number of limitations commonly associated with this application-rich but technologically challenging wavelength range. By considering structures having (i) fixed QW thickness and variable strain, and (ii) fixed strain and variable QW thickness, we quantify key trends in the properties and performance as functions of the alloy composition, structural properties, and emission wavelength, and on this basis identify routes towards the realisation of optimised devices for practical applications. Our analysis suggests that simple laser structures -- incorporating Inx_{x}Ga1x_{1-x}As1y_{1-y}Biy_{y} QWs and unstrained ternary In0.53_{0.53}Ga0.47_{0.47}As barriers -- which are compatible with established epitaxial growth, provide a route to realising InP-based mid-infrared diode lasers.Comment: Submitted versio

    Video sensor with range measurement capability

    Get PDF
    A video sensor device is provided which incorporates a rangefinder function. The device includes a single video camera and a fixed laser spaced a predetermined distance from the camera for, when activated, producing a laser beam. A diffractive optic element divides the beam so that multiple light spots are produced on a target object. A processor calculates the range to the object based on the known spacing and angles determined from the light spots on the video images produced by the camera

    Experimental philosophy leading to a small scale digital data base of the conterminous United States for designing experiments with remotely sensed data

    Get PDF
    Research using satellite remotely sensed data, even within any single scientific discipline, often lacked a unifying principle or strategy with which to plan or integrate studies conducted over an area so large that exhaustive examination is infeasible, e.g., the U.S.A. However, such a series of studies would seem to be at the heart of what makes satellite remote sensing unique, that is the ability to select for study from among remotely sensed data sets distributed widely over the U.S., over time, where the resources do not exist to examine all of them. Using this philosophical underpinning and the concept of a unifying principle, an operational procedure for developing a sampling strategy and formal testable hypotheses was constructed. The procedure is applicable across disciplines, when the investigator restates the research question in symbolic form, i.e., quantifies it. The procedure is set within the statistical framework of general linear models. The dependent variable is any arbitrary function of remotely sensed data and the independent variables are values or levels of factors which represent regional climatic conditions and/or properties of the Earth's surface. These factors are operationally defined as maps from the U.S. National Atlas (U.S.G.S., 1970). Eighty-five maps from the National Atlas, representing climatic and surface attributes, were automated by point counting at an effective resolution of one observation every 17.6 km (11 miles) yielding 22,505 observations per map. The maps were registered to one another in a two step procedure producing a coarse, then fine scale registration. After registration, the maps were iteratively checked for errors using manual and automated procedures. The error free maps were annotated with identification and legend information and then stored as card images, one map to a file. A sampling design will be accomplished through a regionalization analysis of the National Atlas data base (presently being conducted). From this analysis a map of homogeneous regions of the U.S.A. will be created and samples (LANDSAT scenes) assigned by region

    Range-Measuring Video Sensors

    Get PDF
    Optoelectronic sensors of a proposed type would perform the functions of both electronic cameras and triangulation- type laser range finders. That is to say, these sensors would both (1) generate ordinary video or snapshot digital images and (2) measure the distances to selected spots in the images. These sensors would be well suited to use on robots that are required to measure distances to targets in their work spaces. In addition, these sensors could be used for all the purposes for which electronic cameras have been used heretofore. The simplest sensor of this type, illustrated schematically in the upper part of the figure, would include a laser, an electronic camera (either video or snapshot), a frame-grabber/image-capturing circuit, an image-data-storage memory circuit, and an image-data processor. There would be no moving parts. The laser would be positioned at a lateral distance d to one side of the camera and would be aimed parallel to the optical axis of the camera. When the range of a target in the field of view of the camera was required, the laser would be turned on and an image of the target would be stored and preprocessed to locate the angle (a) between the optical axis and the line of sight to the centroid of the laser spot

    Faraday rotation in the MOJAVE blazars: 3C 273 a case study

    Full text link
    Radio polarimetric observations of Active Galactic Nuclei can reveal the magnetic field structure in the parsec-scale jets of these sources. We have observed the gamma-ray blazar 3C 273 as part of our multi-frequency survey with the Very Long Baseline Array to study Faraday rotation in a large sample of jets. Our observations re-confirm the transverse rotation measure gradient in 3C 273. For the first time the gradient is seen to cross zero which is further indication for a helical magnetic field and spine-sheath structure in the jet. We believe the difference to previous epochs is due to a different part of the jet being illuminated in our observations.Comment: 6 pages, 3 figures. To appear in the proceedings of "Beamed and Unbeamed Gamma-rays from Galaxies", held in Muonio, Finland, April 11-15, 2011. Journal of Physics: Conference Serie

    Spinning compact binary inspiral II: Conservative angular dynamics

    Get PDF
    We establish the evolution equations of the set of independent variables characterizing the 2PN rigorous conservative dynamics of a spinning compact binary, with the inclusion of the leading order spin-orbit, spin-spin and mass quadrupole - mass monopole effects, for generic (noncircular, nonspherical) orbits. More specifically, we give a closed system of first order ordinary differential equations for the orbital elements of the osculating ellipse and for the angles characterizing the spin orientations with respect to the osculating orbit. We also prove that (i) the relative angle of the spins stays constant for equal mass black holes, irrespective of their orientation, and (ii) the special configuration of equal mass black holes with equal, but antialigned spins, both laying in the plane of motion (leading to the largest recoil found in numerical simulations) is preserved at 2PN level of accuracy, with leading order spin-orbit, spin-spin and mass quadrupolar contributions included.Comment: v2: 19 pages, extended, improved, published versio

    A Geometric Variational Approach to Bayesian Inference

    Get PDF
    We propose a novel Riemannian geometric framework for variational inference in Bayesian models based on the nonparametric Fisher-Rao metric on the manifold of probability density functions. Under the square-root density representation, the manifold can be identified with the positive orthant of the unit hypersphere in L2, and the Fisher-Rao metric reduces to the standard L2 metric. Exploiting such a Riemannian structure, we formulate the task of approximating the posterior distribution as a variational problem on the hypersphere based on the alpha-divergence. This provides a tighter lower bound on the marginal distribution when compared to, and a corresponding upper bound unavailable with, approaches based on the Kullback-Leibler divergence. We propose a novel gradient-based algorithm for the variational problem based on Frechet derivative operators motivated by the geometry of the Hilbert sphere, and examine its properties. Through simulations and real-data applications, we demonstrate the utility of the proposed geometric framework and algorithm on several Bayesian models

    Super Storm Desmond: a process-based assessment

    Get PDF
    “Super” Storm Desmond broke meteorological and hydrological records during a record warm year in the British-Irish Isles (BI). The severity of the storm may be a harbinger of expected changes to regional hydroclimate as global temperatures continue to rise. Here, we adopt a process-based approach to investigate the potency of Desmond, and explore the extent to which climate change may have been a contributory factor. Through an Eulerian assessment of water vapour flux we determine that Desmond was accompanied by an Atmospheric River (AR) of severity unprecedented since at least 1979, on account of both high atmospheric humidity and high wind speeds. Lagrangian air-parcel tracking and moisture attribution techniques show that long-term warming of North Atlantic sea surface temperatures (SSTs) has significantly increased the chance of such high humidity in ARs in the vicinity of the BI. We conclude that, given exactly the same dynamical conditions associated with Desmond, the likelihood of such an intense AR has already increased by 25% due to long-term climate change. However, our analysis represents a first-order assessment, and further research is needed into the controls influencing AR dynamics

    Methane Mitigation:Methods to Reduce Emissions, on the Path to the Paris Agreement

    Get PDF
    The atmospheric methane burden is increasing rapidly, contrary to pathways compatible with the goals of the 2015 United Nations Framework Convention on Climate Change Paris Agreement. Urgent action is required to bring methane back to a pathway more in line with the Paris goals. Emission reduction from “tractable” (easier to mitigate) anthropogenic sources such as the fossil fuel industries and landfills is being much facilitated by technical advances in the past decade, which have radically improved our ability to locate, identify, quantify, and reduce emissions. Measures to reduce emissions from “intractable” (harder to mitigate) anthropogenic sources such as agriculture and biomass burning have received less attention and are also becoming more feasible, including removal from elevated-methane ambient air near to sources. The wider effort to use microbiological and dietary intervention to reduce emissions from cattle (and humans) is not addressed in detail in this essentially geophysical review. Though they cannot replace the need to reach “net-zero” emissions of CO2, significant reductions in the methane burden will ease the timescales needed to reach required CO2 reduction targets for any particular future temperature limit. There is no single magic bullet, but implementation of a wide array of mitigation and emission reduction strategies could substantially cut the global methane burden, at a cost that is relatively low compared to the parallel and necessary measures to reduce CO2, and thereby reduce the atmospheric methane burden back toward pathways consistent with the goals of the Paris Agreement

    The importance of passive integrated transponder (PIT) tags for measuring life-history traits of sea turtles

    Get PDF
    Capture-mark-recapture studies rely on the identification of individuals through time, using markers or tags, which are assumed to be retained. This assumption, however, may be violated, having implications for population models. In sea turtles, individual identification is typically based on external flipper tags, which can be combined with internal passive integrated transponder (PIT) tags. Despite the extensive use of flipper tags, few studies have modelled tag loss using continuous functions. Using a 26-year dataset for sympatrically nesting green (Chelonia mydas) and loggerhead (Caretta caretta) turtles, this study aims to assess how PIT tag use increases the accuracy of estimates of life-history traits. The addition of PIT tags improved female identification: between 2000 and 2017, 53% of green turtles and 29% of loggerhead turtles were identified from PIT tags alone. We found flipper and PIT tag losses were best described by decreasing logistic curves with lower asymptotes. Excluding PIT tags from our dataset led to underestimation of flipper tag loss, reproductive periodicity, reproductive longevity and annual survival, and overestimation of female abundance and recruitment for both species. This shows the importance of PIT tags in improving the accuracy of estimates of life-history traits. Thus, estimates where tag loss has not been corrected for should be interpreted with caution and could bias IUCN Red List assessments. As such, long-term population monitoring programmes should aim to estimate tag loss and assess the impact of loss on life-history estimates, to provide robust estimates without which population models and stock assessments cannot be derived accurately
    corecore