43 research outputs found
HIGH PERFORMANCE VAPOUR PERMEATION WITH ORGANIC MEMBRANES FOR DEWATERING ETHANOL AND OTHER ORGANIC SOLVENTS
Major advantages of the vapourpermeation in a distillation hybrid-process in comparison to molecular sieve adsorption are lower operating costs and steady state behaviour. Polymeric membranes are also cheap in production costs compared to inorganic membrane types. Disadvantages of state of the art organic membrane dewatering technology are sensitivity, unreliability and insufficient purified product quality.
GKSS has developed a new organic/inorganic membrane (based on polyvinylalcohol), which is longterm stable to common organic solvents (methanol, ethanol, isopropanol, etc.), temperatures up to 130°C and 15wt-% water in the feed. Higher temperatures and feed water-contents are being investigated currently in longterm tests.
Above 5wt-% water in the feed the permeat flux is significantly higher than the permeate flux of inorganic NaA and silica membranes. At 15wt-% water in the feed the permeate flux of 25kg/m²h is approx. twice as high as with a industrially produced NaA membrane [1]. These results are obtained at 120°C, 4bar retentate pressure and 0.02bar permeate pressure. Although below 5wt-% feed water-content the water fraction in the permeat (90wt-% at 1wt-% water in feed) is lower as for the NaA membrane (97wt-% at 1wt-% water in feed), low price and high packing density of the GKSS membrane are probably compensating this drawback.
The new GKSS membrane can be easily produced in industrial scale. During the membrane production it is straightforward to manipulate the flux and selectivity for different solvents and separation problems.
GKSS has developed envelope type membrane modules in recent years (0.49 to 1.25m long and 0.31m in diameter) with a high packing density, low pressure drop and easy to maintain. Customised GKSS envelope type modules can be assembled with up to 184 membrane envelopes of the new GKSS membrane (total active membrane area approx. 22m²).
Upscaling the production capacity can be done by upnumbering this modular technology.
For example, a distillation column top flux of 500kg/h with 85wt-% ethanol, 120°C and 4bar needs a membrane area of 17m² to reach a product quality of 99.6wt-% ethanol with a product flux of 420kg/h. In this simulation pressure drops in permeate and retentate side as well as polarisation effects are considered.
The whole pilot stage production process of membrane and module will be comercialised by GKSS partners.
[1] H. Richter, I. Voigt und J.-T. Kühnert, Dewatering of ethanol by pervaporation and vapour permeation with industrial scale NaA-membranes, Desalination 199 (2006) 92-9
Use of catalytic membrane reactors for in situ reaction and separation
SIGLEAvailable from British Library Document Supply Centre-DSC:DXN029705 / BLDSC - British Library Document Supply CentreGBUnited Kingdo
Study of the Effect of Inorganic Particles on the Gas Transport Properties of Glassy Polyimides for Selective CO2 and H2O Separation
[EN] Three polyimides and six inorganic fillers in a form of nanometer-sized particles were studied as thick film solution cast mixed matrix membranes (MMMs) for the transport of CO2, CH4, and H2O. Gas transport properties and electron microscopy images indicate good polymer-filler compatibility for all membranes. The only filler type thatdemonstrated good distribution throughout the membrane thickness at 10 wt.% loading was BaCe0.2Zr0.7Y0.1O3 (BCZY). The influence of this filler on MMM gas transport properties was studied in detail for 6FDA-6FpDA in a filler content range from one to 20 wt.% and for Matrimid((R)) and P84((R)) at 10 wt.% loading. The most promising result was obtained for Matrimid((R))10 wt.% BCZY MMM, which showed improvement in CO2 and H2O permeabilities accompanied by increased CO2/CH4 selectivity and high water selective membrane at elevated temperatures without H2O/permanent gas selectivity loss.This work was financially supported by the Spanish Government (SEV-2016-0683, SVP-2014-068356, Project ENE2014-57651-R and IJCI-2016-28330 grants) and GeneralitatValenciana (PROMETEO/2018/006 grant) and Helmholtz-Zentrum Geesthacht (HZG) through the technology transfer project program and by the Helmholtz Association of German Research Centers through the Helmholtz Portfolio MEMBRAIN.Escorihuela-Roca, S.; Valero, L.; Tena, A.; Shishatskiy, S.; Escolástico Rozalén, S.; Brinkmann, T.; Serra Alfaro, JM. (2018). Study of the Effect of Inorganic Particles on the Gas Transport Properties of Glassy Polyimides for Selective CO2 and H2O Separation. Membranes. 8(4). https://doi.org/10.3390/membranes8040128S84KULPRATHIPANJA, S. (2003). Mixed Matrix Membrane Development. Annals of the New York Academy of Sciences, 984(1), 361-369. doi:10.1111/j.1749-6632.2003.tb06012.xRobeson, L. M. (2008). The upper bound revisited. Journal of Membrane Science, 320(1-2), 390-400. doi:10.1016/j.memsci.2008.04.030Baker, R. W. (2010). Research needs in the membrane separation industry: Looking back, looking forward. Journal of Membrane Science, 362(1-2), 134-136. doi:10.1016/j.memsci.2010.06.028Stünkel, S., Drescher, A., Wind, J., Brinkmann, T., Repke, J.-U., & Wozny, G. (2011). Carbon dioxide capture for the oxidative coupling of methane process – A case study in mini-plant scale. Chemical Engineering Research and Design, 89(8), 1261-1270. doi:10.1016/j.cherd.2011.02.024Cheng, Y., Wang, Z., & Zhao, D. (2018). Mixed Matrix Membranes for Natural Gas Upgrading: Current Status and Opportunities. Industrial & Engineering Chemistry Research, 57(12), 4139-4169. doi:10.1021/acs.iecr.7b04796Koros, W. J., & Zhang, C. (2017). Materials for next-generation molecularly selective synthetic membranes. Nature Materials, 16(3), 289-297. doi:10.1038/nmat4805Li, Y., He, G., Wang, S., Yu, S., Pan, F., Wu, H., & Jiang, Z. (2013). Recent advances in the fabrication of advanced composite membranes. Journal of Materials Chemistry A, 1(35), 10058. doi:10.1039/c3ta01652hLiu, Y., Liu, G., Zhang, C., Qiu, W., Yi, S., Chernikova, V., … Koros, W. (2018). Enhanced CO2
/CH4
Separation Performance of a Mixed Matrix Membrane Based on Tailored MOF-Polymer Formulations. Advanced Science, 5(9), 1800982. doi:10.1002/advs.201800982Bae, T.-H., Liu, J., Lee, J. S., Koros, W. J., Jones, C. W., & Nair, S. (2009). Facile High-Yield Solvothermal Deposition of Inorganic Nanostructures on Zeolite Crystals for Mixed Matrix Membrane Fabrication. Journal of the American Chemical Society, 131(41), 14662-14663. doi:10.1021/ja907435cZornoza, B., Téllez, C., & Coronas, J. (2011). Mixed matrix membranes comprising glassy polymers and dispersed mesoporous silica spheres for gas separation. Journal of Membrane Science, 368(1-2), 100-109. doi:10.1016/j.memsci.2010.11.027Anson, M., Marchese, J., Garis, E., Ochoa, N., & Pagliero, C. (2004). ABS copolymer-activated carbon mixed matrix membranes for CO2/CH4 separation. Journal of Membrane Science, 243(1-2), 19-28. doi:10.1016/j.memsci.2004.05.008Kim, S., Chen, L., Johnson, J. K., & Marand, E. (2007). Polysulfone and functionalized carbon nanotube mixed matrix membranes for gas separation: Theory and experiment. Journal of Membrane Science, 294(1-2), 147-158. doi:10.1016/j.memsci.2007.02.028Adams, R., Carson, C., Ward, J., Tannenbaum, R., & Koros, W. (2010). Metal organic framework mixed matrix membranes for gas separations. Microporous and Mesoporous Materials, 131(1-3), 13-20. doi:10.1016/j.micromeso.2009.11.035McKeown, N. B. (2018). A perfect match. Nature Materials, 17(3), 216-217. doi:10.1038/s41563-018-0029-1Dechnik, J., Sumby, C. J., & Janiak, C. (2017). Enhancing Mixed-Matrix Membrane Performance with Metal–Organic Framework Additives. Crystal Growth & Design, 17(8), 4467-4488. doi:10.1021/acs.cgd.7b00595Bastani, D., Esmaeili, N., & Asadollahi, M. (2013). Polymeric mixed matrix membranes containing zeolites as a filler for gas separation applications: A review. Journal of Industrial and Engineering Chemistry, 19(2), 375-393. doi:10.1016/j.jiec.2012.09.019Dechnik, J., Gascon, J., Doonan, C. J., Janiak, C., & Sumby, C. J. (2017). Mixed-Matrix Membranes. Angewandte Chemie International Edition, 56(32), 9292-9310. doi:10.1002/anie.201701109Yang, Y., Chuah, C. Y., Nie, L., & Bae, T.-H. (2019). Enhancing the mechanical strength and CO2/CH4 separation performance of polymeric membranes by incorporating amine-appended porous polymers. Journal of Membrane Science, 569, 149-156. doi:10.1016/j.memsci.2018.10.018Mikkelsen, M., Jørgensen, M., & Krebs, F. C. (2010). The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ. Sci., 3(1), 43-81. doi:10.1039/b912904aMiltner, M., Makaruk, A., & Harasek, M. (2017). Review on available biogas upgrading technologies and innovations towards advanced solutions. Journal of Cleaner Production, 161, 1329-1337. doi:10.1016/j.jclepro.2017.06.045Ullah Khan, I., Hafiz Dzarfan Othman, M., Hashim, H., Matsuura, T., Ismail, A. F., Rezaei-DashtArzhandi, M., & Wan Azelee, I. (2017). Biogas as a renewable energy fuel – A review of biogas upgrading, utilisation and storage. Energy Conversion and Management, 150, 277-294. doi:10.1016/j.enconman.2017.08.035Montañez-Hernández, L. E., Hernández-De Lira, I. O., Rafael-Galindo, G., de Lourdes Froto Madariaga, M., & Balagurusamy, N. (2018). Sustainable Production of Biogas from Renewable Sources: Global Overview, Scale Up Opportunities and Potential Market Trends. Sustainable Biotechnology- Enzymatic Resources of Renewable Energy, 325-354. doi:10.1007/978-3-319-95480-6_13Baker, R. W., & Lokhandwala, K. (2008). Natural Gas Processing with Membranes: An Overview. Industrial & Engineering Chemistry Research, 47(7), 2109-2121. doi:10.1021/ie071083wZhang, Y., Sunarso, J., Liu, S., & Wang, R. (2013). Current status and development of membranes for CO2/CH4 separation: A review. International Journal of Greenhouse Gas Control, 12, 84-107. doi:10.1016/j.ijggc.2012.10.009Rezakazemi, M., Ebadi Amooghin, A., Montazer-Rahmati, M. M., Ismail, A. F., & Matsuura, T. (2014). State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): An overview on current status and future directions. Progress in Polymer Science, 39(5), 817-861. doi:10.1016/j.progpolymsci.2014.01.003Angelidaki, I., Treu, L., Tsapekos, P., Luo, G., Campanaro, S., Wenzel, H., & Kougias, P. G. (2018). Biogas upgrading and utilization: Current status and perspectives. Biotechnology Advances, 36(2), 452-466. doi:10.1016/j.biotechadv.2018.01.011Jeon, Y.-W., & Lee, D.-H. (2015). Gas Membranes for CO2/CH4 (Biogas) Separation: A Review. Environmental Engineering Science, 32(2), 71-85. doi:10.1089/ees.2014.0413Murali, R. S., Sankarshana, T., & Sridhar, S. (2013). Air Separation by Polymer-based Membrane Technology. Separation & Purification Reviews, 42(2), 130-186. doi:10.1080/15422119.2012.686000Kanehashi, S., Chen, G. Q., Ciddor, L., Chaffee, A., & Kentish, S. E. (2015). The impact of water vapor on CO2 separation performance of mixed matrix membranes. Journal of Membrane Science, 492, 471-477. doi:10.1016/j.memsci.2015.05.046Kreuer, K. D. (2003). Proton-Conducting Oxides. Annual Review of Materials Research, 33(1), 333-359. doi:10.1146/annurev.matsci.33.022802.091825HAUGSRUD, R. (2007). Defects and transport properties in Ln6WO12 (Ln=La, Nd, Gd, Er). Solid State Ionics, 178(7-10), 555-560. doi:10.1016/j.ssi.2007.01.004Kim, S., Anselmi-Tamburini, U., Park, H. J., Martin, M., & Munir, Z. A. (2008). Unprecedented Room-Temperature Electrical Power Generation Using Nanoscale Fluorite-Structured Oxide Electrolytes. Advanced Materials, 20(3), 556-559. doi:10.1002/adma.200700715Fernández-Barquín, A., Casado-Coterillo, C., Palomino, M., Valencia, S., & Irabien, A. (2015). LTA/Poly(1-trimethylsilyl-1-propyne) Mixed-Matrix Membranes for High-Temperature CO2/N2Separation. Chemical Engineering & Technology, 38(4), 658-666. doi:10.1002/ceat.201400641Tena, A., Shishatskiy, S., Meis, D., Wind, J., Filiz, V., & Abetz, V. (2017). Influence of the Composition and Imidization Route on the Chain Packing and Gas Separation Properties of Fluorinated Copolyimides. Macromolecules, 50(15), 5839-5849. doi:10.1021/acs.macromol.7b01051Escorihuela, S., Tena, A., Shishatskiy, S., Escolástico, S., Brinkmann, T., Serra, J., & Abetz, V. (2018). Gas Separation Properties of Polyimide Thin Films on Ceramic Supports for High Temperature Applications. Membranes, 8(1), 16. doi:10.3390/membranes8010016Corma, A., Fornés, V., Guil, J. ., Pergher, S., Maesen, T. L. ., & Buglass, J. . (2000). Preparation, characterisation and catalytic activity of ITQ-2, a delaminated zeolite. Microporous and Mesoporous Materials, 38(2-3), 301-309. doi:10.1016/s1387-1811(00)00149-9Itoh, T., Mori, M., Inukai, M., Nitani, H., Yamamoto, T., Miyanaga, T., … Idemoto, Y. (2015). Effect of Annealing on Crystal and Local Structures of Doped Zirconia Using Experimental and Computational Methods. The Journal of Physical Chemistry C, 119(16), 8447-8458. doi:10.1021/jp5117118Vigneron, F., Sougi, M., Meriel, P., Herr, A., & Meyer, A. (1980). Etude par diffraction de neutrons des structures magnétiques de TbBe 13 à basse température. Journal de Physique, 41(2), 123-133. doi:10.1051/jphys:01980004102012300Scherb, T., Kimber, S. A. J., Stephan, C., Henry, P. F., Schumacher, G., Escolástico, S., … Banhart, J. (2016). Nanoscale order in the frustrated mixed conductor La5.6WO12−δ. Journal of Applied Crystallography, 49(3), 997-1008. doi:10.1107/s1600576716006415Han, D., Kishida, K., Shinoda, K., Inui, H., & Uda, T. (2013). A comprehensive understanding of structure and site occupancy of Y in Y-doped BaZrO3. Journal of Materials Chemistry A, 1(9), 3027. doi:10.1039/c2ta00675hMorejudo, S. H., Zanón, R., Escolástico, S., Yuste-Tirados, I., Malerød-Fjeld, H., Vestre, P. K., … Kjølseth, C. (2016). Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor. Science, 353(6299), 563-566. doi:10.1126/science.aag0274IZA Structure Comissionhttp://www.iza-structure.org/Lillepärg, J., Georgopanos, P., Emmler, T., & Shishatskiy, S. (2016). Effect of the reactive amino and glycidyl ether terminated polyethylene oxide additives on the gas transport properties of Pebax® bulk and thin film composite membranes. RSC Advances, 6(14), 11763-11772. doi:10.1039/c5ra22026bZhang, C., Dai, Y., Johnson, J. R., Karvan, O., & Koros, W. J. (2012). High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations. Journal of Membrane Science, 389, 34-42. doi:10.1016/j.memsci.2011.10.003Fernández-Barquín, A., Casado-Coterillo, C., Palomino, M., Valencia, S., & Irabien, A. (2016). Permselectivity improvement in membranes for CO2/N2 separation. Separation and Purification Technology, 157, 102-111. doi:10.1016/j.seppur.2015.11.032Sabetghadam, A., Seoane, B., Keskin, D., Duim, N., Rodenas, T., Shahid, S., … Gascon, J. (2016). Metal Organic Framework Crystals in Mixed-Matrix Membranes: Impact of the Filler Morphology on the Gas Separation Performance. Advanced Functional Materials, 26(18), 3154-3163. doi:10.1002/adfm.201505352Khayet, M., & García-Payo, M. C. (2009). X-Ray diffraction study of polyethersulfone polymer, flat-sheet and hollow fibers prepared from the same under different gas-gaps. Desalination, 245(1-3), 494-500. doi:10.1016/j.desal.2009.02.013RECIO, R., PALACIO, L., PRADANOS, P., HERNANDEZ, A., LOZANO, A., MARCOS, A., … DEABAJO, J. (2007). Gas separation of 6FDA–6FpDA membranesEffect of the solvent on polymer surfaces and permselectivity. Journal of Membrane Science, 293(1-2), 22-28. doi:10.1016/j.memsci.2007.01.022Calle, M., Lozano, A. E., de Abajo, J., de la Campa, J. G., & Álvarez, C. (2010). Design of gas separation membranes derived of rigid aromatic polyimides. 1. Polymers from diamines containing di-tert-butyl side groups. Journal of Membrane Science, 365(1-2), 145-153. doi:10.1016/j.memsci.2010.08.051Liu, Y., Huang, J., Tan, J., Zeng, Y., Ding, Q., Zhang, H., … Xiang, X. (2017). Barrier and thermal properties of polyimide derived from a diamine monomer containing a rigid planar moiety. Polymer International, 66(8), 1214-1222. doi:10.1002/pi.5381Yampolskii, Y., Shishatskii, S., Alentiev, A., & Loza, K. (1998). Correlations with and prediction of activation energies of gas permeation and diffusion in glassy polymers. Journal of Membrane Science, 148(1), 59-69. doi:10.1016/s0376-7388(98)00130-6Jamil, A., Ching, O. P., & Shariff, A. B. M. (2016). Current Status and Future Prospect of Polymer-Layered Silicate Mixed-Matrix Membranes for CO2
/CH4
Separation. Chemical Engineering & Technology, 39(8), 1393-1405. doi:10.1002/ceat.201500395Bae, T.-H., & Long, J. R. (2013). CO2/N2 separations with mixed-matrix membranes containing Mg2(dobdc) nanocrystals. Energy & Environmental Science, 6(12), 3565. doi:10.1039/c3ee42394hCastarlenas, S., Téllez, C., & Coronas, J. (2017). Gas separation with mixed matrix membranes obtained from MOF UiO-66-graphite oxide hybrids. Journal of Membrane Science, 526, 205-211. doi:10.1016/j.memsci.2016.12.041Galve, A., Sieffert, D., Vispe, E., Téllez, C., Coronas, J., & Staudt, C. (2011). Copolyimide mixed matrix membranes with oriented microporous titanosilicate JDF-L1 sheet particles. Journal of Membrane Science, 370(1-2), 131-140. doi:10.1016/j.memsci.2011.01.011Vinoba, M., Bhagiyalakshmi, M., Alqaheem, Y., Alomair, A. A., Pérez, A., & Rana, M. S. (2017). Recent progress of fillers in mixed matrix membranes for CO 2 separation: A review. Separation and Purification Technology, 188, 431-450. doi:10.1016/j.seppur.2017.07.05
Gas Separation Properties of Polyimide Thin Films on Ceramic Supports for High Temperature Applications
[EN] Novel selective ceramic-supported thin polyimide films produced in a single dip coating step are proposed for membrane applications at elevated temperatures. Layers of the polyimides P84 (R), Matrimid 5218 (R), and 6FDA-6FpDA were successfully deposited onto porous alumina supports. In order to tackle the poor compatibility between ceramic support and polymer, and to get defect-free thin films, the effect of the viscosity of the polymer solution was studied, giving the entanglement concentration (C*) for each polymer. The C* values were 3.09 wt. % for the 6FDA-6FpDA, 3.52 wt. % for Matrimid (R), and 4.30 wt. % for P84 (R). A minimum polymer solution concentration necessary for defect-free film formation was found for each polymer, with the inverse order to the intrinsic viscosities (P84 (R) >= Matrimid (R) >> 6FDA-6FpDA). The effect of the temperature on the permeance of prepared membranes was studied for H-2, CH4, N-2, O-2, and CO2. As expected, activation energy of permeance for hydrogen was higher than for CO2, resulting in H-2/CO2 selectivity increase with temperature. More densely packed polymers lead to materials that are more selective at elevated temperatures.This work was financially supported by the Spanish Government through predoctoral training grants for Centres/units of Excellence "Severo Ochoa" (SEV-2016-0683), which gave S. Escorihuela the opportunity to undertake a research stay at Helmholtz-Zentrum Geesthacht (HZG), Spanish Ministry of Economy and Competitiveness (Project ENE2014-57651-R) and Helmholtz-Zentrum Geesthacht (HZG) through the technology transfer project program and by the Helmholtz Association of German Research Centers through the Helmholtz Portfolio MEMBRAIN. The authors thank M. Schieda and P. Merten for the support in the coating process and viscosity determination, and the microscopy service at Universitat Politecnica de Valencia (UPV) for the FE-SEM images.Escorihuela-Roca, S.; Tena, A.; Shishatskiy, S.; Escolástico Rozalén, S.; Brinkmann, T.; Serra Alfaro, JM.; Abetz, V. (2018). Gas Separation Properties of Polyimide Thin Films on Ceramic Supports for High Temperature Applications. Membranes. 8(1). https://doi.org/10.3390/membranes8010016S8
Advancing Precision Vaccinology by Molecular and Genomic Surveillance of Severe Acute Respiratory Syndrome Coronavirus 2 in Germany, 2021
Background
Comprehensive pathogen genomic surveillance represents a powerful tool to complement and advance precision vaccinology. The emergence of the Alpha variant in December 2020 and the resulting efforts to track the spread of this and other severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern led to an expansion of genomic sequencing activities in Germany.
Methods
At Robert Koch Institute (RKI), the German National Institute of Public Health, we established the Integrated Molecular Surveillance for SARS-CoV-2 (IMS-SC2) network to perform SARS-CoV-2 genomic surveillance at the national scale, SARS-CoV-2–positive samples from laboratories distributed across Germany regularly undergo whole-genome sequencing at RKI.
Results
We report analyses of 3623 SARS-CoV-2 genomes collected between December 2020 and December 2021, of which 3282 were randomly sampled. All variants of concern were identified in the sequenced sample set, at ratios equivalent to those in the 100-fold larger German GISAID sequence dataset from the same time period. Phylogenetic analysis confirmed variant assignments. Multiple mutations of concern emerged during the observation period. To model vaccine effectiveness in vitro, we employed authentic-virus neutralization assays, confirming that both the Beta and Zeta variants are capable of immune evasion. The IMS-SC2 sequence dataset facilitated an estimate of the SARS-CoV-2 incidence based on genetic evolution rates. Together with modeled vaccine efficacies, Delta-specific incidence estimation indicated that the German vaccination campaign contributed substantially to a deceleration of the nascent German Delta wave.
Conclusions
SARS-CoV-2 molecular and genomic surveillance may inform public health policies including vaccination strategies and enable a proactive approach to controlling coronavirus disease 2019 spread as the virus evolves.Peer Reviewe
Net‐Zero CO 2 Germany - A Retrospect From the Year 2050
Germany 2050: For the first time Germany reached a balance between its sources of anthropogenic CO2 to the atmosphere and newly created anthropogenic sinks. This backcasting study presents a fictional future in which this goal was achieved by avoiding (∼645 Mt CO2), reducing (∼50 Mt CO2) and removing (∼60 Mt CO2) carbon emissions. This meant substantial transformation of the energy system, increasing energy efficiency, sector coupling, and electrification, energy storage solutions including synthetic energy carriers, sector-specific solutions for industry, transport, and agriculture, as well as natural-sink enhancement and technological carbon dioxide options. All of the above was necessary to achieve a net-zero CO2 system for Germany by 2050
Zero-Discharge Process for Recycling of Tetrahydrofuran–Water Mixtures
The sustainable design of separation and polymer synthesis processes is of great importance. Therefore, an energy-efficient process for the purification of tetrahydrofuran (THF)–water (H2O) solvent mixtures from an upstream polymer synthesis process in pilot scale was developed with the aim to obtain high purity separation products. The advantages and limitations of a hybrid process in the pilot scale were studied utilizing an Aspen Plus Dynamics® simulation at different pressures to prove the feasibility and energy efficiency. For the rough separation of the two components, distillation was chosen as the first process step. In this way, a separation of a water stream of sufficient quality for further precipitations after polymer synthesis could be achieved. In order to overcome the limitations of the distillation process posed by the azeotropic point of the mixture, a vapor permeation is used, which takes advantage of the heat of evaporation already used in the distillation column. For the purpose of achieving the required low water contents, an adsorption column is installed downstream for final THF purification. This leads to a novel hybrid separation process that is energy efficient and thus allows also the use of the solvents again for upstream polymer synthesis achieving the high purity requirements in a closed-loop process