487 research outputs found

    Isolated critical point from Lovelock gravity

    Get PDF
    For any K(=2k+1)th-order Lovelock gravity with fine-tuned Lovelock couplings, we demonstrate the existence of a special isolated critical point characterized by non-standard critical exponents in the phase diagram of hyperbolic vacuum black holes. In the Gibbs free energy this corresponds to a place wherefrom two swallowtails emerge, giving rise to two first-order phase transitions between small and large black holes. We believe that this is a first example of a critical point with non-standard critical exponents obtained in a geometric theory of gravity.Comment: 5 pages, 2 figure

    Thermodynamic Volumes and Isoperimetric Inequalities for de Sitter Black Holes

    Get PDF
    We consider the thermodynamics of rotating and charged asymptotically de Sitter black holes. Using Hamiltonian perturbation theory techniques, we derive three different first law relations including variations in the cosmological constant, and associated Smarr formulas that are satisfied by such spacetimes. Each first law introduces a different thermodynamic volume conjugate to the cosmological constant. We examine the relation between these thermodynamic volumes and associated geometric volumes in a number of examples, including Kerr-dS black holes in all dimensions and Kerr-Newman-dS black holes in D=4. We also show that the Chong-Cvetic-Lu-Pope solution of D=5 minimal supergravity, analytically continued to positive cosmological constant, describes black hole solutions of the Einstein-Chern-Simons theory and include such charged asymptotically de Sitter black holes in our analysis. In all these examples we find that the particular thermodynamic volume associated with the region between the black hole and cosmological horizons is equal to the naive geometric volume. Isoperimetric inequalities, which hold in the examples considered, are formulated for the different thermodynamic volumes and conjectured to remain valid for all asymptotically de Sitter black holes. In particular, in all examples considered, we find that for fixed volume of the observable universe, the entropy is increased by adding black holes. We conjecture that this is true in general.Comment: 13 pages, no figures v2:includes comments on the Nariai limit and compressibility of the black hole horizon, added reference

    A Model-Free Sampling Method for Estimating Basins of Attraction Using Hybrid Active Learning (HAL)

    Full text link
    Understanding the basins of attraction (BoA) is often a paramount consideration for nonlinear systems. Most existing approaches to determining a high-resolution BoA require prior knowledge of the system's dynamical model (e.g., differential equation or point mapping for continuous systems, cell mapping for discrete systems, etc.), which allows derivation of approximate analytical solutions or parallel computing on a multi-core computer to find the BoA efficiently. However, these methods are typically impractical when the BoA must be determined experimentally or when the system's model is unknown. This paper introduces a model-free sampling method for BoA. The proposed method is based upon hybrid active learning (HAL) and is designed to find and label the "informative" samples, which efficiently determine the boundary of BoA. It consists of three primary parts: 1) additional sampling on trajectories (AST) to maximize the number of samples obtained from each simulation or experiment; 2) an active learning (AL) algorithm to exploit the local boundary of BoA; and 3) a density-based sampling (DBS) method to explore the global boundary of BoA. An example of estimating the BoA for a bistable nonlinear system is presented to show the high efficiency of our HAL sampling method.Comment: Update: 1) add the schematic of the magnet-induced bistable system, 2) emphasize that the proposed method can be implemented when the system's model is unknown. 6 pages, 5 figures, 2 table

    Evidence of temperature-dependent effects on the estrogenic response of fish: implications with regard to climate change

    Get PDF
    The official published version can be obtained from the link below - Copyright @ 2008 Elsevier BV.Chemical risk assessment is fraught with difficulty due to the problem of accounting for the effects of mixtures. In addition to the uncertainty arising from chemical-to-chemical interactions, it is possible that environmental variables, such as temperature, influence the biological response to chemical challenge, acting as confounding factors in the analysis of mixture effects. Here, we investigate the effects of temperature on the response of fish to a defined mixture of estrogenic chemicals. It was anticipated that the response to the mixture may be exacerbated at higher temperatures, due to an increase in the rate of physiological processing. This is a pertinent issue in view of global climate change. Fathead minnows (Pimephales promelas) were exposed to the mixture in parallel exposure studies, which were carried out at different temperatures (20 and 30 degrees C). The estrogenic response was characterised using an established assay, involving the analysis of the egg yolk protein, vitellogenin (VTG). Patterns of VTG gene expression were also analysed using real-time QPCR. The results revealed that there was no effect of temperature on the magnitude of the VTG response after 2 weeks of chemical exposure. However, the analysis of mixture effects at two additional time points (24 h and 7 days) revealed that the response was induced more rapidly at the higher temperature. This trend was apparent from the analysis of effects both at the molecular and biochemical level. Whilst this indicates that climatic effects on water temperature are not a significant issue with regard to the long-term risk assessment of estrogenic chemicals, the relevance of short-term effects is, as yet, unclear. Furthermore, analysis of the patterns of VTG gene expression versus protein induction gives an insight into the physiological mechanisms responsible for temperature-dependent effects on the reproductive phenology of species such as roach. Hence, the data contribute to our understanding of the implications of global climate change for wild fish populations.This work was funded by a grant from the Natural Environment Research Council NE/D00389X/1). Additional support was provided by a small research grant from the Fisheries Society of the British Isles

    Effects of radial immersion and cutting direction on chatter instability

    Get PDF
    ABSTRACT Low radial immersion end-milling involves intermittent cutting. If the tool is flexible, its motion in both the x-and ydirections affects the chip load and cutting forces, leading to chatter instability under certain conditions. Interrupted cutting complicates stability analysis by imposing sharp periodic variations in the dynamic model. Stability predictions for the 2-DOF model differ significantly from prior 1-DOF models of interrupted cutting. In this paper stability boundaries of the 2-DOF milling process are determined by three techniques and compared: (1) a frequency-domain technique developed b
    corecore