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ABSTRACT 
Low radial immersion end-milling involves intermittent 

cutting. If the tool is flexible, its motion in both the x- and y-
directions affects the chip load and cutting forces, leading to 
chatter instability under certain conditions. Interrupted cutting 
complicates stability analysis by imposing sharp periodic 
variations in the dynamic model. Stability predictions for the 2-
DOF model differ significantly from prior 1-DOF models of 
interrupted cutting. In this paper stability boundaries of the 2-
DOF milling process are determined by three techniques and 
compared: (1) a frequency-domain technique developed by 
Altintas and Budak (1995); (2) a method based on time finite 
element analysis; and (3) the statistical variance of periodic 
1/tooth samples in a time-marching simulation. Each method 
has advantages in different situations. The frequency-domain 
technique is fastest, and is accurate except at very low radial 
immersions. The temporal FEA method is significantly more 
efficient than time-marching simulation, and provides accurate 
stability predictions at small radial immersions. The variance 
estimate is a robust and versatile measure of stability for 
experimental tests as well as simulation. Experimental up-
milling and down-milling tests, in a simple model with varying 
cutting directions, agree well with theory. 

1 INTRODUCTION 
Milling is a metal cutting process in which the cutting tool 

intermittently enters and leaves the workpiece, unlike turning, in 
which the tool is always in contact. In both milling and turning 
chatter is an important instability that limits metal removal rate. 
Tlusty and co-workers (Tlusty, 1962, e.g.) and Tobias (1965) 
developed frequency-domain methods for stability analysis of 
continuous cutting. These methods have been used widely to 
determine exact stability boundaries for turning, and 
approximate stability boundaries for milling. Significant 
ttps://proceedings.asmedigitalcollection.asme.org on 06/29/2019 Terms of Use: 
improvements were made by Minis and Yanushevsky (1993) 
and Altintas and Budak (1995). In particular, Altintas and 
Budak (1995) provide a complete frequency-domain algorithm 
for end-milling that accounts for x- and y-deflection of the tool, 
and uses a truncated Fourier series to approximate the periodic 
entry and exit of the tool from the cut. With a single Fourier 
series term, this method provides accurate stability predictions 
except for cuts with very low radial immersion where a small 
fraction of time is spent in the cut. 

Davies et al. (2000, 2001) analyzed the limiting case of 
extremely low radial immersion milling.  A 1-DOF model of 
interrupted cutting was cast in the form of a discrete “map” in 
the time domain; the stability of the map was used to predict the 
existence of additional stability regions, and to characterize the 
transitions to instability. Their results for the 1-DOF model 
were confirmed independently by Corpus and Endres (2000) 
using Floquet theory and experiment, and by Stépan and 
Insperger (2000); these methods were not restricted to 
infinitesimal times in the cut. Bayly et al. (2001) extended the 
approach of Davies and co-workers by the use of time finite 
element analysis (TFEA). This approach also led to stability 
analysis of a discrete map, as in the method of Davies et al. 
(2000, 2001), but the requirement of small time in the cut was 
relaxed. Analytical and experimental results were obtained for a 
1-DOF system (Bayly et al., 2001). 

In this paper we extend to 2-DOF and higher the TFEA 
method presented in Bayly et al. (2001). The extension to 2-
DOF is important because a realistic model of milling must 
account for both x- and y-deflections. Behavior predicted by a 
1-DOF model may not be found in a 2-DOF model. 
Furthermore, the 2-DOF formulation requires that all equations 
be expressed in a matrix-vector form that can be further 
extended to an arbitrary number of degrees of freedom. TFEA 
stability predictions are compared to frequency-domain 
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predictions obtained by the method of Altintas and Budak 
(1995), and to the results of time-marching simulation. Stability 
of the simulation was determined from the variance of 1/tooth 
samples; an approach recently developed by Schmitz and co-
workers (2001a, b, c). 

A 1-DOF experimental system was used to confirm some 
the theoretical predictions obtained by TFEA. In particular, 
incorporation of the cutter rotation angle leads to significant 
differences in the stability charts for interrupted up-milling and 
down-milling. Once/tooth sampling of the vibration time series 
clearly differentiates stable and unstable behavior. 

 

2 MODEL AND STABILITY ANALYSIS 
2.1 Cutting forces and tool dynamics 

2.1.1 Two-DOF model 
A basic model of 2-DOF milling with a flexible tool is 

illustrated in Figure 1. A single mode in each of two 
perpendicular directions is accounted for, and the part is 
assumed to be rigid. The tool is not required to be symmetric. 
For the system of Figure 1, the equations of motion are: 
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n
ntnncnxxxx tFtFFxkxcxm
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)(sin)(cos θθ&&&      (1a) 
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)(cos)(sin θθ&&&  (1b) 

where N is the number of teeth, cnF is the “cutting” or 

tangential component of cutting force, and tnF is the “thrust” or 
radial component. The angle of each tooth is simply the tool 
rotation angle plus the pitch angle of the respective tooth: 

nn φθθ += . An approximate linear relationship between chip 
area and cutting force is commonly used: 

 
nccn bdkF =        nttn bdkF =   (2a,b) 

where b is the axial depth of cut and nd is the chip thickness: a 
function of feed, tool rotation, tool deflection and tool 
deflection at the time of previous tooth passage, )( Ttx −v . 
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tooth n in contact (3a) 
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This model can be compactly represented by the matrix 

equation 
 

)()]([)( 0 θθ fbTtxxbKxKxCxM c
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where the displacement vector and dynamic matrices 
corresponding to Figure 1 are: 
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The “cutting stiffness matrix” and force vector incorporate 

a switching function )( ng θ  to account for entry and exit of 
each tooth. Both terms also include trigonometric dependencies  
due to tool rotation. 
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1)( =ng θ   exitnentry θθθ <<   (7a) 

0)( =ng θ   exitnentryn θθθθ ><   ,  (7b) 

Here ),(cos tc nθ= )(sin ts nθ= are used to abbreviate the 
equations. 
 

2.1.2 Single-DOF cutting with cutter rotation angle 
If one degree of freedom is constrained, or is much stiffer 

dynamically than the other degree of freedom, the system can 
be analyzed as a single-degree-of-freedom (1-DOF) system. 
Considering only the x-direction, the second column and row  
of Equation 4 can be deleted, and  the resulting equation of 
motion becomes: 

bfTtxtxbKkxxcxm os )()]()([)( θθ −−−−=++ &&&   (8) 
where 

p

N

p
pnptps KKtgK θθθθ sin)sincos)(()(

1
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=

+=    (9a) 

p

N

p
pnptpo hKKtgf θθθθ sin)sincos)(()(

1
∑

=

+=  (9b) 

This 1-DOF model differs from the 1-DOF model analyzed 
in Bayly et al. (2001) because of the dependence of 
terms )(θsK and )(θof  on the cutter rotation angle θ .   This 
allows investigation of differences between up-milling and 
down-milling in a 1-DOF model. This model was studied 
because a reliable 1-DOF experimental test-bed was available 
for experimental validation.   
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2.2 Stability analysis 

2.2.1 TFEA analysis of a 2-DOF system 
In low-radial immersion milling (or for any cut less than a 

full slot, with a 2-fluted tool), the tool switches between cutting 
and not cutting. When out of the cut, the free vibration of the 
tool can be described exactly, in closed form. When the tool is 
in the cut, there is no exact solution to the equation of motion 
because of the time-delayed terms. However, we can break up 
the time in the cut into multiple elements and approximate the 
vector displacement on a single element as a linear combination 
of polynomial trial functions. The derivation below parallels 
that shown in Bayly et al. (2001). The displacement on the jth 
element is: 
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kt and the trial functions )(τφ i  are the cubic Hermite 
polynomials 
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These functions are particularly useful because of their end 

conditions: 
  

0)(,0)(,0)0(,1)0( 1111 ==== jj tt φφφφ &&   (12a) 

0)(,0)(,1)0(,0)0( 2222 ==== jj tt φφφφ && ,  (12b) 

0)(,1)(,0)0(,0)0( 3333 ==== jj tt φφφφ && , (12c) 

1)(,0)(,0)0(,0)0( 4444 ==== jj tt φφφφ && . (12d) 
  

The end conditions allow the coefficients of the polynomials to 
correspond directly to the initial and final values of 
displacement and velocity for each element. 
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For the assumed form of the solution, on the jth element the 

time-delayed displacement is  
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and the velocity and acceleration on the jth element are given 
by 
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Substitution of the assumed solution into the equation of 

motion leads to a non-zero error. If the error is “weighted” by a 
set of test functions, 2,1),( =pp τψ  (Hou and Peters, 1994) 
and the integral of the weighted error is set to zero, we obtain 
two vector equations per element. The test functions are chosen 
to be the functions that provide a measure of average error and 
linearly increasing error: 1)(1 =τψ  (constant) and 

2/1/)(2 −= jtττψ  (linear). The two equations are, for p=1,2: 
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Evaluation of the definite integrals leads to two algebraic 

equations that are linear in the coefficients of the trial functions. 
These equations can be written as a single matrix equation for 
the jth element. 
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In the previous expressions, note that the cutting forces and 
stiffness matrices depend on the angle of tool rotation, which 
depends on time. So in the above integrals, ))(( τθcc KK =  
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While the tool is in the cut, the position and velocity at the 

end of one element are equal to the position and velocity at the 
beginning of the next element. 
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The initial and final conditions during free vibration are related 
by a state transition matrix, using the coefficients jia

v
to specify 

position and velocity: 
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and where E is the total number of finite elements in the cut. 
Finally, Equations 17-20 can be rearranged to obtain the 
coefficients of the assumed solution in terms of (i) the 
coefficients at the time of the previous tooth passage, and (ii) 
the periodic nominal cutting force. The following expression is 
for the case when the number of elements, E=3. 
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where the sub-matrices are: 
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For larger numbers of elements, E, the global matrices, of 
dimensions )44()44( +×+ EE  are analogous to the matrices 
of Equation 21. 

 
Equation 21 describes a linear discrete dynamical system, 

or map that can be written as 
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or 
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Stability is determined from the eigenvalues of the matrix Q. 
Eigenvalues of magnitude greater than 1 indicate instability. 

Note that the effect of vibration on geometric part accuracy 
(Schmitz and Ziegert, 1999) can be analyzed by this technique 
as well. Surface location error is specified by the value of the 
coefficient corresponding to displacement normal to the surface 
at the time the tooth leaves the cut in down-milling (or enters 
the cut in up-milling). In the steady state,  
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and thus the steady-state vector of coefficients is  
 

DIa
vv 1* )( −−= Q    (26) 

Since the matrix Q and vector D
v

can be computed exactly for 
each speed and depth of cut, the steady-state displacement can 
be found, and can be used to specify surface location error as a 
function of machining process parameters. 

 

2.2.2 Generalization to multiple modes 
Suppose that multiple modes are involved in both the x- 

and y- directions. Let the modes be normalized to unity 
amplitude at the tool tip, so that: 
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The x- and y-modes are governed by 
 

∑
=

−==++
N

n
ntnncnxrrxrrxrrx tFtFFkcm

1
)(sin)(cos θθηηη &&&   (28a) 

∑
=

−−==++
N

n
ntnncnyrryrryrry tFtFFkcm

1
)(cos)(sin θθξξξ &&& (28b) 

 
Since the chip load depends on the total x- and y-

displacements, and using a matrix to sum the modal 
coefficients, we can write (for a 3-mode model): 
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or 

[ ] )()()()( 0
' θηηθ fbTttbK

F
F

c
y

x vvv +−−=






  (30) 

 
where )(' θcK is a 2x2R matrix and )(tηv is a 2Rx1 vector of 
modal coefficients. Then we can assemble Equations 28-30 into 
a single matrix equation of the form 

 

0
**** )]()[( FbTtbKKCM c

vvvv&v&&v +−−=++ ηηθηηη ,   (31) 
 

and use the procedures outlined in the previous section. 
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2.3 Variance of 1/tooth samples in Euler simulation 
A simple Euler time-marching scheme (Tlusty 1999) with 

720 steps/rev was applied to integrate Equations 1a-1b 
numerically for a 2-flute tool. The Euler method was chosen 
because the single, uniform time step makes it simple to keep 
track of time-delayed displacements. In the simulation, loss of 
contact between the tool and workpiece (while a flute is within 
the angular range defined by the radial immersion) due to large 
amplitude tool vibration is  treated; additionally, the 
instantaneous chip thickness is calculated using the current tool 
vibration and surfaces left by three previous cutter revolutions. 
The displacements were sampled periodically at 1 sample/tooth 
(at the time each tooth exits the cut for a down-milling 
operation). The statistical variance, σ2, of the 1/tooth samples of 
total cutter displacement was calcuated using  the last 20   of a 
total of 40 simulated tool revolutions according to Equation 32, 
where S is the total number of samples, ri. More details can be 
found in Schmitz et al. (2001c). 
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2.4 Cutting tests 
Milling tests were performed with an experimental flexure 

designed corresponding to the 1-DOF system of Section 2.1.2. 
1-DOF tests were performed for the current work because of 
their simplicity and the availability of equipment. The 
workpiece was clamped on a monolithic, uni-directional flexure 
machined from aluminum and instrumented with a single non-
contact, eddy current displacement transducer, as shown in 
Figure 2. A radial immersion of RDOC=0.237 was used to up-
mill and down-mill aluminum (7075-T6) test samples over a 
specified range of speeds and axial depths of cut. A 0.750-inch 
diameter carbide end mill with a single flute was used; the 
second flute was ground off to remove any effects due to 
asymmetry or runout. Feed was held constant at 0.004 in/rev.  

The stiffness of the flexure to deflections in the x-direction 
was measured to be 61018.2 ×=k N/m. The natural frequency 
was experimentally determined to be 146.5 Hz and the damping 
ratio 0032.0=ξ , which corresponds to very light damping, 
typical of a monolithic flexure. In comparison, the values of 
stiffness in the perpendicular y- and z-directions were more than 
20 times greater, as was the stiffness of the tool. The cutting 
coefficients in the tangential and normal direction were 
determined from the rate of increase in cutting force as a 
function of chip load during separate cutting tests on a Kistler 
Model 9255B rigid dynamometer (Halley, 1999). The estimated 
values were 8100.2 ×=nK N/m2 and 8105.5 ×=tK  N/m2. 

The displacement transducer output was anti-alias filtered 
and sampled (16-bit precision, 12800 samples/sec) with SigLab 
20-22a data acquisition hardware connected to a Toshiba Tecra 
520 laptop computer. A periodic 1/tooth pulse was obtained 
5 Copyright © 2002 by ASME 
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with the use of a laser tachometer to sense a black-white 
transition on the rotating tool holder. 

 

3 RESULTS 

3.1 Analysis and simulation of 2-DOF cutting 
A benchmark 2-DOF case was chosen with the following 

parameters, which were estimated from modal tests on a 12.7 
mm (0.5 inch) diameter, 2-flute, carbide helical end mill with  a 
106.2 mm overhang (9:1 length/diameter ratio) held in an HSK 
63A collet-type tool holder: Natural frequency 922 Hz; Stiffness 

61034.1 × N/m; Damping ratio 0.011. Specific cutting 
pressures were: 8106×=cK N/m2 and 8102 ×=tK N/m2. 
These parameters were held to be the same in both directions. 

Spindle speed was varied from 5,000 rpm to 21,000 rpm 
and axial depth of cut (ADOC) was varied from 0 to 10 mm, 
and radial imersions of 100% (full slot), 50%, 10%, and 5% 
were used. The eigenvalues of the discrete map (Equation 24) 
obtained via TFEA were computed. The behavior of 
eigenvalues during the transition to instability is shown in 
Figure 3 (ADOC= 3 mm, 5% radial immersion). As speed is 
increased from 13,500 to 15,500 rpm, two eigenvalues attain a 
magnitude greater than unity at a speed near 14,500 rpm. The 
eigenvalues penetrate the unit circle with complex values. As 
speed is increased again, stability is regained. In the higher 
speed range shown, from 18,200 rpm to 20,800 rpm, 
eigenvalues again penetrate the unit circle, re-entering along the 
negative real axis. This route, associated with a “flip” 
bifurcation signifies alternating or period-2 behavior. 

In Figure 4 simulation results at different speeds are shown 
(ADOC= 3 mm, 5% radial immersion). Data from continuous 
sampling and 1/tooth sampling are shown. The 1/tooth data 
decay to a single steady value for all stable cuts. For unstable 
cuts, the behavior of the 1/tooth samples depends on what type 
of instability has occurred. If the instability corresponds to a 
complex eigenvalue of the discrete map, the 1/tooth samples 
trace a rotating trajectory in displacement-velocity state space. 
If the instability corresponds to a negative real eigenvalue, the 
1/tooth data appear to flip back and forth between two values. 

In Figures 5 and 6, stability boundaries computed via 
TFEA are compared to boundaries computed by a frequency-
domain method (Altintas and Budak, 1995, one-term Fourier 
approximation of cutting coefficients), and to contours of the 
variance of 1/tooth samples (dark regions represent low 
variance and stable cutting, while light areas indicate high 
variance and chatter). It is apparent that the three methods agree 
closely for 100% and 50% radial immersion. At 10% radial 
immersion, small differences arise between the frequency 
domain method and the other two results. Particularly at 5% 
radial immersion the TFEA method predicts the results of 
simulation very well.  It is seen in Figures 5c, 6c, and 6f that 
spurious data points appear (i.e., small areas of low variance in 
the unstable regions).  This is a consequence of the number of 
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revolutions of data used to calculate the variance – a minimum 
value was chosen to decrease execution time. 

To produce these results, the frequency domain analysis 
was completed in 10-20 seconds, the TFEA method in about 1-2 
minutes, but the time-marching simulation required 1-2 days on 
a Pentium II 266 MHz PC. Results were computed at 100 rpm 
speed increments and 0.1 mm increments in ADOC (i.e., on a 
160 x 100 data grid). All of the methods were implemented in 
MATLAB1 and none of the algorithms was optimized for 
speed. The size of the TFEA transition matrix Q is 

4444 +×+ EE . Typically results are converged when 
ρ20=E where ρ  is the fraction of time in the cut. So for 

1.0=ρ , Q is 1212 × and for 5.0=ρ , Q is 2424 × . 
 

3.2 Experimental cutting test results: 1-DOF milling 
including  cutter rotation angle 

Raw displacement measurements and 1/tooth samples for 
several example cases of up-milling (A,B,C,D) are shown in 
Figure 7. Tests were declared stable if the 1/tooth-sampled 
position of the tool approached a steady constant value.  Cases 
A and C in Figure 7 are clear examples of stable behavior.  
Unstable behavior predicted by two complex eigenvalues with a 
magnitude greater than one in the mathematical model 
corresponds to a Hopf bifurcation.  In such cases chatter 
vibrations are unsynchronized with tooth passage as shown in 
example B of Figure 7.   When the dominant eigenvalue of the 
mathematical model is negative and real, a magnitude greater 
than one predicts a period doubling or flip bifurcation.  
Experimental evidence confirms this prediction where chatter is 
a subharmonic of order 2 as shown in case D of Figure 7.  
Stability results from up-milling tests are summarized in Figure 
8, along with theoretical stability boundaries obtained by 
TFEA.  

Raw displacement measurements and 1/tooth samples 
representing down-milling cases (E,F,G,H) on this graph are 
shown in Figure 9.  Stability results from down-milling tests are 
superimposed over the appropriate stability predictions 
obtained via TFEAand shown in Figure 10.   The agreement 
between stability predictions and experimental results is 
generally very good.   

The theoretical predictions made by TFEA agree exactly 
with the predictions obtained independently by the method of 
Insperger and Stepan (2001). The qualitative difference 
between up-milling and down-milling stability boundaries seen 
in Figures 8 and 10 was predicted by Insperger and Stepan 
(2001). It is confirmed by TFEA for a larger range of speeds 
and radial depths of cut in Figure 11. Up-milling and down-
6 Copyright © 2002 by ASME 
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milling stability regions become identical for a full slot 
( 5.0=ρ  for a 1-flute tool). 

 

4 DISCUSSION AND CONCLUSIONS 
TFEA is a newly developed method that complements 

frequency-domain stability analysis and time-marching 
simulation. It is useful especially for efficient stability 
prediction at low radial immersions. TFEA and time-marching 
results for the 2-DOF symmetric model of milling show less 
pronounced additional regions of stablity than were observed in 
1-DOF interrupted cutting models and tests.  

At moderate and high radial immersions, frequency domain 
methods remain the most advantageous in terms of time and 
accuracy. Even in these situations, TFEA and time-marching 
simulation add insight and qualitative information on tool 
behavior and surface quality. The variance method used to 
define stability in simulation is a powerful and flexible method 
for determining stability in both simulations and experiment. 
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Figure 1: A 2-DOF model of milling. Fraction of time in the cut is determined by the radial immersion (radial depth of cut/tool 
diameter) and number of teeth. The angle θ decreases with tool rotation. 
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Figure 2: (a) Schematic diagram of the 1-DOF experiment. (b-c) Frequency response function of the flexure. Fitted parameters are:  

61018.2 ×=k N/m; fn=146.5 Hz ; damping ratio 0032.0=ξ , Damping is extremely light in the monolithic aluminum structure. 
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Figure 3: 2-DOF. Eigenvalue ( λ ) behavior of discrete map from TFEA of 2-DOF model as speed is increased. ADOC 3 mm. 5% 
radial immersion. (a) Magnitude vs speed, showing two instability regions where |λ |>1. (b) Eigenvalue trajectory in complex plane in 
first region of instability (Hopf bifurcation); (c)  Eigenvalue trajectory in second region of instability (flip bifurcation). 

 
Figure 4: 2-DOF. Output from 2-DOF simulation showing time series of y-displacement, 1/tooth samples of y-displacement, and 
1/tooth plots of y-displacement vs y-velocity. ADOC = 3 mm. 5% radial immersion. (a-c) 14000 rpm (stable, variance = 65 µm2); (d-f) 
16000 rpm (unstable, variance = 973 µm2); (g-i) 18000 rpm (stable, variance = 28 µm2); (j-l) 19000 rpm (unstable, variance =  403 
µm2).  
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Figure 5: 2-DOF: Stability lobes for 2-DOF model (limiting depth of cut vs spindle speed) obtained via (a,d) frequency domain 
analysis, (b,e) TFEA, and (c,f) variance of 1/tooth samples from time-marching simulation. (a-c) 100% radial immersion; (d-f) 50% 
radial immersion. 
 

 
Figure 6: 2-DOF: Stability lobes for 2-DOF model obtained via (a,d) frequency domain analysis, (b,e) TFEA, and  (c,f) variance of 
1/tooth samples from time-marching simulation. (a-c) 10% radial immersion; (d-f) 5% radial immersion. 
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Figure 7: 1-DOF: Up-milling experimental data for cases (A,B,C,D) of Figure 8.  Each row contains a continuous sampling plot, a 
1/tooth plot, and a Poincare section shown in delayed coordinates.  Plots for cases A (RPM=3000, b=0.5mm) and C (RPM=3550, 
b=1.1mm) are stable. Case B (RPM=3300, b=0.8mm) is a Hopf bifurcation and case D (RPM=3650, b=2.3mm) is a flip bifurcation. 
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Figure 8: 1-DOF: Summary of 1-DOF up-milling experimental results and stability boundaries predicted by TFEA. 
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Figure 9: 1-DOF: Down-milling experimental data for cases (E,F,G,H) of Figure 10.  Each row contains a continuous sampling plot, a 
1/tooth plot, and a Poincare section shown in delayed coordinates.  Plots for cases F (RPM=3550, b=1.1mm) and H (RPM=4106, 
b=0.5mm) are stable. Case G (RPM=3600, b=2.1mm) is a Hopf bifurcation and case E (RPM=3457, b=1.3mm) is a flip bifurcation. 
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Figure 10: 1-DOF: Summary of 1-DOF down-milling experimental results vs stability predictions obtained by TFEA. 
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Figure 11: 1-DOF: Comparison of up-milling and down-milling stability boundaries predicted by TFEA for a single flute tool and a 1-
DOF flexible workpiece, incorporating cutter rotation angle. The boundaries are quite different at low radial immersion due to the 
different angle of the cutting force. In a full slot, 5.0=ρ , up-milling and down-milling are identical. Note that fraction of time in the 
cut 5.0=ρ in a full slot since there is only one tooth. 
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