260 research outputs found

    Fixing feedback revision rules in online markets

    Get PDF
    Feedback withdrawal mechanisms in online markets aim to facilitate the resolution of conflicts during transactions. Yet, frequently used online feedback withdrawal rules are flawed and may backfire by inviting strategic transaction and feedback behavior. Our laboratory experiment shows how a small change in the design of feedback withdrawal rules, allowing unilateral rather than mutual withdrawal, can both reduce incentives for strategic gaming and improve coordination of expectations. This leads to less trading risk, more cooperation, and higher market efficiency.Series: Department of Strategy and Innovation Working Paper Serie

    Hybrid method for simulating front propagation in reaction-diffusion systems

    Full text link
    We study the propagation of pulled fronts in the AA+AA \leftrightarrow A+A microscopic reaction-diffusion process using Monte Carlo (MC) simulations. In the mean field approximation the process is described by the deterministic Fisher-Kolmogorov-Petrovsky-Piscounov (FKPP) equation. In particular we concentrate on the corrections to the deterministic behavior due to the number of particles per site Ω\Omega. By means of a new hybrid simulation scheme, we manage to reach large macroscopic values of Ω\Omega which allows us to show the importance in the dynamics of microscopic pulled fronts of the interplay of microscopic fluctuations and their macroscopic relaxation.Comment: 5 pages, 4 figure

    Solving the Kidney Exchange Problem Using Privacy-Preserving Integer Programming (Updated and Extended Version)

    Full text link
    The kidney exchange problem (KEP) is to find a constellation of exchanges that maximizes the number of transplants that can be carried out for a set of pairs of patients with kidney disease and their incompatible donors. Recently, this problem has been tackled from a privacy perspective in order to protect the sensitive medical data of patients and donors and to decrease the potential for manipulation of the computing of the exchanges. However, the proposed approaches to date either only compute an approximative solution to the KEP or they suffer from a huge decrease in performance. In this paper, we suggest a novel privacy-preserving protocol that computes an exact solution to the KEP and significantly outperforms the other existing exact approaches. Our novel protocol is based on Integer Programming which is the most efficient method for solving the KEP in the non privacy-preserving case. We achieve an improved performance compared to the privacy-preserving approaches known to date by extending the output of the ideal functionality to include the termination decisions of the underlying algorithm. We implement our protocol in the SMPC benchmarking framework MP-SPDZ and compare its performance to the existing protocols for solving the KEP. In this extended version of our paper, we also evaluate whether and if so how much information can be inferred from the extended output of the ideal functionality.Comment: This is the updated and extended version of the work published in 19th Annual International Conference on Privacy, Security and Trust (PST2022), August 22-24, 2022, Fredericton, Canada / Virtual Conference, https://doi.org/10.1109/PST55820.2022.985196

    Anomalous suppression of the shot noise in a nanoelectromechanical system

    Full text link
    In this paper we report a relaxation-induced suppression of the noise for a single level quantum dot coupled to an oscillator with incoherent dynamics in the sequential tunneling regime. It is shown that relaxation induces qualitative changes in the transport properties of the dot, depending on the strength of the electron-phonon coupling and on the applied voltage. In particular, critical thresholds in voltage and relaxation are found such that a suppression below 1/2 of the Fano factor is possible. Additionally, the current is either enhanced or suppressed by increasing relaxation, depending on bias being greater or smaller than the above threshold. These results exist for any strength of the electron-phonon coupling and are confirmed by a four states toy model.Comment: 7 pages, 7 eps figures, submitted to PRB; minor changes in the introductio

    Emergence of pulled fronts in fermionic microscopic particle models

    Full text link
    We study the emergence and dynamics of pulled fronts described by the Fisher-Kolmogorov-Petrovsky-Piscounov (FKPP) equation in the microscopic reaction-diffusion process A + A A$ on the lattice when only a particle is allowed per site. To this end we identify the parameter that controls the strength of internal fluctuations in this model, namely, the number of particles per correlated volume. When internal fluctuations are suppressed, we explictly see the matching between the deterministic FKPP description and the microscopic particle model.Comment: 4 pages, 4 figures. Accepted for publication in Phys. Rev. E as a Rapid Communicatio

    Fronts with a Growth Cutoff but Speed Higher than vv^*

    Get PDF
    Fronts, propagating into an unstable state ϕ=0\phi=0, whose asymptotic speed vasv_{\text{as}} is equal to the linear spreading speed vv^* of infinitesimal perturbations about that state (so-called pulled fronts) are very sensitive to changes in the growth rate f(ϕ)f(\phi) for ϕ1\phi \ll 1. It was recently found that with a small cutoff, f(ϕ)=0f(\phi)=0 for ϕ<ϵ\phi < \epsilon, vasv_{\text{as}} converges to vv^* very slowly from below, as ln2ϵ\ln^{-2} \epsilon. Here we show that with such a cutoff {\em and} a small enhancement of the growth rate for small ϕ\phi behind it, one can have vas>vv_{\text{as}} > v^*, {\em even} in the limit ϵ0\epsilon \to 0. The effect is confirmed in a stochastic lattice model simulation where the growth rules for a few particles per site are accordingly modified.Comment: 4 pages, 4 figures, to appear in Rapid Comm., Phys. Rev.

    Front Propagation and Diffusion in the A <--> A + A Hard-core Reaction on a Chain

    Get PDF
    We study front propagation and diffusion in the reaction-diffusion system A \leftrightharpoons A + A on a lattice. On each lattice site at most one A particle is allowed at any time. In this paper, we analyze the problem in the full range of parameter space, keeping the discrete nature of the lattice and the particles intact. Our analysis of the stochastic dynamics of the foremost occupied lattice site yields simple expressions for the front speed and the front diffusion coefficient which are in excellent agreement with simulation results.Comment: 5 pages, 5 figures, to appear in Phys. Rev.

    Quantum machine learning: a classical perspective

    Get PDF
    Recently, increased computational power and data availability, as well as algorithmic advances, have led machine learning techniques to impressive results in regression, classification, data-generation and reinforcement learning tasks. Despite these successes, the proximity to the physical limits of chip fabrication alongside the increasing size of datasets are motivating a growing number of researchers to explore the possibility of harnessing the power of quantum computation to speed-up classical machine learning algorithms. Here we review the literature in quantum machine learning and discuss perspectives for a mixed readership of classical machine learning and quantum computation experts. Particular emphasis will be placed on clarifying the limitations of quantum algorithms, how they compare with their best classical counterparts and why quantum resources are expected to provide advantages for learning problems. Learning in the presence of noise and certain computationally hard problems in machine learning are identified as promising directions for the field. Practical questions, like how to upload classical data into quantum form, will also be addressed.Comment: v3 33 pages; typos corrected and references adde

    Detection of Low Frequency Multi-Drug Resistance and Novel Putative Maribavir Resistance in Immunocompromised Pediatric Patients with Cytomegalovirus.

    Get PDF
    Human cytomegalovirus (HCMV) is a significant pathogen in immunocompromised individuals, with the potential to cause fatal pneumonitis and colitis, as well as increasing the risk of organ rejection in transplant patients. With the advent of new anti-HCMV drugs there is therefore considerable interest in using virus sequence data to monitor emerging resistance to antiviral drugs in HCMV viraemia and disease, including the identification of putative new mutations. We used target-enrichment to deep sequence HCMV DNA from 11 immunosuppressed pediatric patients receiving single or combination anti-HCMV treatment, serially sampled over 1-27 weeks. Changes in consensus sequence and resistance mutations were analyzed for three ORFs targeted by anti-HCMV drugs and the frequencies of drug resistance mutations monitored. Targeted-enriched sequencing of clinical material detected mutations occurring at frequencies of 2%. Seven patients showed no evidence of drug resistance mutations. Four patients developed drug resistance mutations a mean of 16 weeks after starting treatment. In two patients, multiple resistance mutations accumulated at frequencies of 20% or less, including putative maribavir and ganciclovir resistance mutations P522Q (UL54) and C480F (UL97). In one patient, resistance was detected 14 days earlier than by PCR. Phylogenetic analysis suggested recombination or superinfection in one patient. Deep sequencing of HCMV enriched from clinical samples excluded resistance in 7 of 11 subjects and identified resistance mutations earlier than conventional PCR-based resistance testing in 2 patients. Detection of multiple low level resistance mutations was associated with poor outcome

    Kilohertz-driven Bose-Einstein condensates in optical lattices

    Full text link
    We analyze time-of-flight absorption images obtained with dilute Bose-Einstein con-densates released from shaken optical lattices, both theoretically and experimentally. We argue that weakly interacting, ultracold quantum gases in kilohertz-driven optical potentials constitute equilibrium systems characterized by a steady-state distri-bution of Floquet-state occupation numbers. Our experimental results consistently indicate that a driven ultracold Bose gas tends to occupy a single Floquet state, just as it occupies a single energy eigenstate when there is no forcing. When the driving amplitude is sufficiently high, the Floquet state possessing the lowest mean energy does not necessarily coincide with the Floquet state connected to the ground state of the undriven system. We observe strongly driven Bose gases to condense into the former state under such conditions, thus providing nontrivial examples of dressed matter waves.Comment: 36 pages, 3 figures, Advance Atomic Molecular Physics in pres
    corecore