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Front propagation and diffusion in the A A+ A hard-core reaction on a chain
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We study front propagation and diffusion in the reaction-diffusion systéémA+ A on a lattice. On each
lattice site at most ona particle is allowed at any time. In this paper, we analyze the problem in the full range
of parameter space, keeping the discrete nature of the lattice and the particles intact. Our analysis of the
stochastic dynamics of the foremost occupied lattice site yields simple expressions for the front speed and the
front diffusion coefficient which are in excellent agreement with simulation results.
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. INTRODUCTION A—2A and kq the reaction rate for death processegy 2
. . o —A, as the average equilibrium number of partiches
In this paper, we study the propagation and diffusion of a=, /k,. In the limit N—c°, the normalized particle density
front in the A=A+ A reaction on a chain, in the case that p;=N; /N then obeys a mean-field equation which is a lattice
there cannot be more than oAeparticle on each lattice site analog of the continuum reaction-diffusion equatiégp
(“hard-core exclusion). The front propagation problem we =Dg2p+p—p2, whereD is the diffusion rate of individual
consider is the following. We start from a situation illustratedparticles on the chain. The front problem mentioned above,
in Fig. 1(a in which there are na\ particles at all on the i.e., the propagation of a front into an empty region, then
right half of the system, while there is a nonzero density ofcorresponds in the mean-field limit—« to a front propa-
particles on the left. The object of study is then thegating into the linearly unstable stape=0 (the mean-field
asymptotic average speedwith which the region with a behavior is also obtained in the limit in which the particle
nonzero density of particles expands to the right, as well adiffusion coefficientD — [2—4], but we will focus on the
the effective diffusion coefficierid; of this “front.” For the ~ case in which the diffusion coefficient is finite and compa-
hard-core exclusion problem, the front position is most confable to the growth and annihilation rateShe behavior of
veniently defined as the position of the forem@ightmosi such fron.ts in determinis_tic continuum equations has been
particle, see Figs.(&,b. The average front speed and front Studied since long and is very well understoee, e.g.,
diffusion coefficient are then the average drift speednd ~ RefS. E576])- Since t”he nonlinear front solutions are essen-
the diffusive spreading- VDt of the width of the probabil- tally “pulled along” by the growth of the leading edge
ity distribution P, (t) for the locationk; of the foremost wherep<1, such front.s are often referred toslled fronts
. o f . R [6]. The remarkable discovery of the last few years has been
ocqup|ed lattice site, as |I|gstratgd in Figcl Ope of the that since the propagation is driven by the region where
main results of the paper is a simple expressionufand

SO . L small, they are particularly sensitive to the discrete nature of
D;, which is accurate in the range where the deviations fro y b y

Mhe particles which manifests itself in changes in the dynam-
the mean-field theory are large. Our results reduce to an ex- P g y

act expressions derived before for the particular case ir(a) time ¢t =0

which the particle diffusion coefficierd and annihilation foiel to totee | | LIt
rateW are equa[1] and our expression for the front speed
reduces to the approximate expression obtained for the spe time ¢
cial caseW=0 in Refs.[2—4]. In addition, we study the (P) o joio| [o] 0| joioio fote] [ototel o [ [ 11 [1]]]]
average patrticle profile behind the foremost occupied lattice
site and analyze how its behavior affects the average fronc)
speed and diffusion.

The perspective of this work lies in the issues that have
emerged from the surprising findings for fronts in this
reaction-diffusion system in the limit in whidK, the average
number of particles per lattice site in equilibrium, is large. In
a lattice model, one can turi¢ by allowing more than one
partlcle per site(no h_ard-core e)_(CIUS'Omnd c_hanglng the FIG. 1. (a) The type of initial condition we consider for our
ratio ky/Kkq, wherek, is the reaction rate for birth processes sychastic modelb) lilustration of a typical snapshot of the state of

the system at finite time. The foremost particle has advanced to the
right relative to the one where it started &t 0. (c) Qualitative
*Present address: Institute for Theoretical Physics, Universiteisketch of the probability distribution function for the foremost par-
van Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam, Theicle att=0 (dashed ling at large timeg; the center of the peak
Netherlands. drifts with speecv, while the peak widens proportional tDt.
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ics whenp becomes of order V. Indeed, Brunet, and Der- (a) | |

rida discovered that the convergence to the mean-field limit D g/

is extremely slow withN: the average front speed con- [/ | |®] | [l ®

verges as 1/fN to the mean-field valug7]. This is in con- L

trast to the fact that for pushed fronts, the convergence tc | ®

asymptotic speed behaves as a power Nf This slow con-

vergence has been confirmed for a variety of mofigisl4].

In addition, in a model that Brunet and Derrida studied in ©_ 1 |eje] |

Ref. [8], the front diffusion coefficienD; was numerically W/ w

shown to vanish only as 1AN. | @] \| |
The dominant asymptotic correction to the mean-field re-

sult for the front speed in the limii— o traces simply to the | | |®] |

change in the dynamics at=0(1/N) [7], and as a result

appear to be universal. However, all corrections beyond th

as_ymptotlc ong appear .to dependnuniversallyon .the (:{e- ) creation of a new particle on a site neighboring an occupied site

tailed stochastic d,yna,mlcs at the foremo,St OCCUP'ed Site angis, rate e; (c) annihilation of a particle on a site adjacent to an

those closely behind it, where asymptotic techniques are q;ccupied site at a raté/.

no use since the number of particles involved in the dynam-

ics is small14]. Moreover, the stochastic dynamics in the tip

region even seems to be strongly nonlinearly coupled to th

uniformly translating average front profile behind the tip.
For analyzing these effects for finite values of the particl

FIG. 2. The microscopic processes that take place inside the
System:(a) a diffusive hop with ratd® to a neighboring empty site;

eous annihilation of one of the two patrticles. If we do so,
then the diffusive process contributes to the annihilation of
eparticles. However, in this paper we shall stick to the con-

diffusion coefficientD and particle numbeN, it is found to vention that diffusive hops are allowed only to empty sites.

: ; Lo As noted before, earlier work on models of this type in-
be expedient to develop a stochastic front description by fo- .
cussing on the behavior of the foremost particle or the foregludes ihat odeﬁrste;tﬁtZ)A] and kl?ramson;t al. [3] on the
most occupied bifi14]. As it turns out, this idea traces back C@S€W=0 and that of ben-Avraham on the cdSe-W [1]

to the earlier work by Kersteif,4], and Bramson and co- (also, variants of this model have been analyzed in Refs.

nly two nontrivial parameters in the model, e.g., the ratios

/e andD/W, since an overall multiplicative factor just sets
gle time scale. Our interest is in the parameter range where
both of these ratios ar€®(1); when these ratios tend to

two foremost particle§l5], but this important simplification " '
b 815] P P infinity, the front speed approaches the mean-field value

is lost whenW=0 [16]. Motivated by the desire to under-
stand the ingredients necessary to analyze the stochastic frcmt_‘ﬂ' L
behavior for finite values ob, W, andN, we focus here on For an er)se_mbl_e of front realizations, Iet_us deT‘Ote _the
analyzing bothy andD; in the case in which all the transi- probability Q|strlput|on for the foremost ocgup|ed Iatnc:_a site
tion rates are comparable; our analysis includes the specilff P€ at lattice sit&; by Py (t). The evolution ofPy(t) is
point D=W where an exact result was obtained by ben-then described by

Avraham[1].

dPy
f
Il. THE MODEL, FRONT SPEED, AND FRONT i = (D+2)Pi 1 H[DPEIPT WL ]~ (D+2)Py
DIFFUSION

_ empty+ Cl
We now turn to the details of our model and our results [Dpkf Wpﬁf], @)

for the stochastic fronts. We consider a chain on which
gﬁcr)t\'/%eisn g?gn 2u.ndergo the following three basic rnovesHere,P‘k’fC(t) and PEfmpty(t) denote the joint probabilities that
(a) A particle can diffuse to any one of its neighbor lattice the foremost particle is at site; and that the Si“kf_ocl is
sites with a diffusion rat®, provided this neighboring site is 0ccupied or empty, respectively. Clearlp, (t)= Pkfc(t)
empty. + Pﬁ?“pty(t), and 2y Py (t)=1. The first term on the right-
f (b) Any partlc_:kreﬂ;:anlgl\_/e birth to "?‘rr‘loms_r cr:]ne on any oN€hand side of Eq(1) describes the increase Ry (t) due to
° |(t§) i:pglnr;e(l)? twgrAatg::tieclzl tsesevl\g; iar1] |tr(t) tvrv%tenei hbor- the advancement of a foremost occupied lattice site from
y P ging g positionk;— 1, while the second term describes the increase

ing filled lattice sites can get annihilated with a death kte ) X .
Note that in the above formulation, diffusive hops to in Pkf(t) due to the retreat of a foremost occupied lattice site

neighboring sites which are occupied are not allowed. Wdrom positionk;+1. The third and the fourth terms, respec-
can also think about these stochastic moves differently: fofively, describe the decrease iy (t) due to the advance-
example, we can allow nearest neighbor diffusive hops to anent and retreat of a foremost occupied lattice site from
site which is already occupied be followed by an instantapositionk; .
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From the definition okaf(t), the mean position and the
width of the distribution for the positions of the foremost
occupied lattice sites are defined )ds)zEkfkakf(t) and
(AX%(1)) == [ ki —x(1)]?Py (1) [20]. The mean speed and
diffusion coefficient of the front are thus given in terms of
these quantities as the—o limit of v=dx(t)/dt and
(AX2(t))=2Dt—see Fig. 1c). To obtain them, we need the
expressions oP‘k’fC"(t) and Pﬁ?‘pty(t). To start with, we have

PR (1) = pk,— 1Py (1), )

wherepkf,l is the conditional probability of having thek{

—1)th lattice site occupiedthe foremost particle is at the
k:th lattice site. The set of conditional occupation densities
Pk;—m for m=1 can be thought of as determining the front

profile in a frame moving with each front realization. For
obtainingv andD;, we simply need to know the asymptotic
long-time limit pkf,l(t—mo), which from here on we will

denote simply apy,—1- Given Pk;—1: it is then straightfor-
ward to obtain from Eq.(1) and the conditionsPy (t)
=PIt + PRP(t) and 2y Py (1) =1,

dx
UZEIS—Pkffl(W—D)

and

d(Ax?)
dt

=2D+e+py,—1(W-D). (3

Of these, the second equation indicates that the front warl”

dering is diffusive, and an expression of the front diffusion
coefficientD; is therefore given by

1
Di=5[2D+e&+py—1(W=D)]. (4)

As noted already by ben-Avrahdr] in a continuum formu-
lation of the present model, for the special c&se W the

unknown quantit;pkf,l drops out of Eq(3); it thus leads to

the exactresultsv =¢ andD;=D +&/2 as a special cases of
Eq. (4) for D=W. We also note that if we use E) in Eq.
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FIG. 3. Comparison of the expressionwin Eq. (6) (solid line)
with stochastic simulation datéilled circles, for D=¢=0.25. The
error in the data is of the order of the size of the symbols. The
corresponding data point fdd =W, as analyzed in Ref1], is
shown by the larger open circle.

the total probability is of product forrso that the probabil-
ity of having different sites is occupied is uncorrelgteshd

that the equilibrium occupation densityis simply given by
p=el(et+W).

The crudest approximation for the front profitg —p,
and, in particular, foupkf_l is to just takepkf_ﬁ; Substi-

tution of this approximation into Eq$3) and (4) immedi-
ately yields our main result,

B g(e+D)

_(8+2W)(D+8)
Terw N 2 +W)

v T 2(e W)

(6)
For W=0, the expression fars reduces to the one obtained
Refs.[2-4].

In what follows, we will first compare these approximate
expressions fov andD; to the results of computer simula-
tion for the caseD/e=1 [21], and then investigate the ap-
propriateness and shortcomings of the approxima,!aipfnl

~ p.
The comparison of E(6) with stochastic simulation data
for D=¢=0.25 are presented in Figs. 3 and 4 as a function

0.48 T T

(1), the latter equation has the form of the master equation

for a single random walker on a chain. Thus, we can think of D,

the foremost particle as executing a biased random walk, and 03

D; as the effective diffusion coefficient of this walker. More- ’

over, if we eliminate,okf,l from Egs.(3) and(4), we get the

following exactrelation: 021 .

0.28 0.56 0.84

v/2+D¢=D+es. (5
In order to obtain an explicit prediction ferandD;, we FIG. 4. Comparison of the front diffusion coefficient according
need an expression fqurkf,l. Far behind the front the par- to Eq.(6) (solid line) with stochastic spreading datfilled circles
ticle density will approach the homogeneous equilibrium@nd with Eq.(5) (open trianglel for D=¢=0.25. The large open
densitvo: lim — 5 Erom the master equation it is circle once again corresponds to the direct measurement of the ef-
yp: m—ocPki—m= P- q fective front diffusion coefficient foD =W, as analyzed in Ref.
easy to show that the homogeneous equilibrium solution fof1].

w
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of W for D=¢=0.25. The simulation algorithm has been 0.09 — . . . w w
adopted from Refl14], and is essentially the same one as in

Ref. [9]. The speed has been obtained directly from the

average position of the foremost occupied lattice site in a _0_0(2)
single long run according tw(t)=[x(t) —x(to)]/(t—tp)

corresponding tox(t) —x(tp)=15000 consecutive forward d

jumps. The diffusion coefficient has been determined both 013 |
from the speed measurements via Eg).and from data for )

the average diffusive spreading during 1000 time intervals = W =038

At up to 500 taken from five long run®f which the data

from the first 5000 consecutive forward jumps of the fore- -0.24 — ' : : ‘ ‘

k6 k-5 k—4 k-3 k2 k-1

most occupied lattice site were ignored, so as to eliminate site index, k

initial transient effects For each of these runs, the mean

square displacemer\x?) was confirmed to grow linearly FIG. 5. Relative deviationl= (p,— p)/p of the average density
with time. Figures 3 and 4 show that our approximate exfrom p=s/(s+W) for the first six lattice sites to the left of the
pressions(6) for the speed and diffusion coefficiefgolid  foremost occupied lattice sitg for D=¢=0.25 and three different
line) are quite accurate fdd/e=1 over the whole range of values ofW.
values ofW where we have performed simulations; interest-

ingly, the values ofD; obtained from the speed measure-

ments via Eq(5) are more accurate than those obtained di- In conclusion, this work clearly illustrates that the concept
recﬂy from the diffusive Spreading_ The error bars in F|g 40f the dynamics of the foremost occupied lattice site, in Refs.
correspond to the standard deviationsDgfvalues obtained [2—4,14 and here, can be a viable route towards analyzing
from five long runs. the front propagation and diffusion in stochastic lattice mod-

We now return to the issue of the appropriateness of th Is. n the presenti=<1 model a S|mple approximation fqr
e interaction of the foremost particle with the front region

assumptiorpy ;= p. While the agreement between the the-pehind it already yields quite accurate resultsdaandD; .
oretical prediction for andD; gives empirical evidence that We hope that this success provides new motivation and in-
this assumption is a reasonably good one, we see from Fig. giration to tackle the complicated case in whiths large
that although Eq(6) agrees well with the simulation data, but finite. . o
there are small but systematic deviations on both sides of this In principle, it should be possible to extend the analysis in
region. These deviations can be explained as followsWAs the spirit of the one developed by Kerstéld4] to get suc-

. ) ) ) . cessively more accurate expressions Qr_,, and corre-
—0, p71; far behind the front all lattice sites are occupied. !

H he density of icles behind the f spondingly for the front speed and diffusion coefficient. In
owever, the density of particles just behind the foremosiy, ticy|ar, such extensions might allow one to use the results

one is smaller, since it takes a finite time for the density t9p 5 wider parameter range, such B&W—o while D/e
relax to the asymptotic one. For large valued\fthe effec- ~0(1), or D/e— while W/e~0O(1). However, inspec-
tive diffusion rate is much larger than the drift rate, as@.  tion of the earlier analysis suggests that such higher order
shows. As a result, once again the density of particles jusiinalytical expressions @y, 1 are less trivial to obtain than
behind the foremost one also has relatively small time teyne might expect at first sight. More precisely, in the light of
relax to the asymptotic value. This is reflected in the differ-Refs.[15,16], it is clear that forW+ 0, the master equation
ence betweepy, s andp i Fig. 5. rated byK Iatice sites Couples 1o probabiity distibutions.
The above trends are borne out by the S|r_nu_lat|on resu“%wolvin)g/] particles that are fFl)thher bgck. Whil)e/ it is certainly
of Fig. 5, where we plot the relative deviatiot=(p possible to solve the master equation numerically, it does not
—p)lpfork=ki—1,... ki—6. Firstof all, the data confirm appear to lead one to an analytical expressiopof ; that
that unless the valué/is too small,py 1= p is quite a good  provides a better approximation than what we have used in
approximation, and that the density behind the foremost paithis paper.
ticle is enhanced for large/ and reduced for smallv. We

IlI. CONCLUSION

also note that we have verified that if one substitutes the ACKNOWLEDGMENT
pk,-1 Values forwW=0 andW=0.8 from Fig. 5 into Eq(1), The work by D.P. and that of G.T. during an earlier stay at
one does recover the corresponding measured speeds, as dih@versiteit Leiden was supported by the Foundation FOM
should. (Fundamenteel Onderzoek der Matgrie
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