285 research outputs found

    Spatial prediction models for landslide hazards: review, comparison and evaluation

    Get PDF
    The predictive power of logistic regression, support vector machines and bootstrap-aggregated classification trees (bagging, double-bagging) is compared using misclassification error rates on independent test data sets. Based on a resampling approach that takes into account spatial autocorrelation, error rates for predicting 'present' and 'future' landslides are estimated within and outside the training area. In a case study from the Ecuadorian Andes, logistic regression with stepwise backward variable selection yields lowest error rates and demonstrates the best generalization capabilities. The evaluation outside the training area reveals that tree-based methods tend to overfit the data

    The penetration of plasma clouds across magnetic boundaries : the role of high frequency oscillations

    Full text link
    Experiments are reported where a collisionfree plasma cloud penetrates a magnetic barrier by self-polarization. We here focus on the resulting anomalous magnetic field diffusion into the plasma cloud, two orders of magnitude faster than classical, which is one important aspect of the plasma cloud penetration mechanism. Without such fast magnetic diffusion, clouds with kinetic beta below unity would not be able to penetrate magnetic barriers at all. Tailor-made diagnostics has been used for measurements in the parameter range with the kinetic beta ? 0.5 to 10, and with normalized width w/r(gi) of the order of unity. Experimental data on hf fluctuations in density and in electric field has been combined to yield the effective anomalous transverse resistivity eta(EFF). It is concluded that they are both dominated by highly nonlinear oscillations in the lower hybrid range, driven by a strong diamagnetic current loop that is set up in the plasma in the penetration process. The anomalous magnetic diffusion rate, calculated from the resistivity eta(EFF), is consistent with single-shot multi-probe array measurements of the diamagnetic cavity and the associated quasi-dc electric structure. An interpretation of the instability measurements in terms of the resistive term in the generalized (low frequency) Ohm's law is given.Comment: 12th International Congress on Plasma Physics, 25-29 October 2004, Nice (France

    Conditions for plasmoid penetration across magnetic barriers

    Full text link
    The penetration of plasma clouds, or plasmoids, across abrupt magnetic barriers (of the scale less than a few ion gyro radii, using the plasmoid directed velocity) is studied. The insight gained earlier, from experimental and computer simulation investigations of a case study, is generalised into other parameter regimes. It is concluded for what parameters a plasmoid should be expected to penetrate the magnetic barrier through self-polarization, penetrate through magnetic expulsion, or be rejected from the barrier. The scaling parameters are n(e), v(0), B(perp), m(i), T(i), and the width w of the plasmoid. The scaling is based on a model for strongly driven, nonlinear magnetic field diffusion into a plasma, which is a generalization of the laboratory findings. The results are applied to experiments earlier reported in the literature, and also to the proposed application of impulsive penetration of plasmoids from the solar wind into the Earth's magnetosphere.Comment: 12th International Congress on Plasma Physics, 25-29 October 2004, Nice (France

    Where are global vegetation greening and browning trends significant?

    Get PDF

    On the electron energy distribution function in the high power impulse magnetron sputtering discharge

    Get PDF
    We apply the Ionization Region Model (IRM) and the Orsay Boltzmann equation for ELectrons coupled with Ionization and eXcited states kinetics (OBELIX) model to study the electron kinetics of a high power impulse magnetron sputtering (HiPIMS) discharge. In the IRM the bulk (cold) electrons are assumed to exhibit a Maxwellian energy distribution and the secondary (hot) electrons, emitted from the target surface upon ion bombardment, are treated as a high energy tail, while in the OBELIX the electron energy distribution is calculated self-consistently using an isotropic Boltzmann equation. The two models are merged in the sense that the output from the IRM is used as an input for OBELIX. The temporal evolutions of the particle densities are found to agree very well between the two models. Furthermore, a very good agreement is demonstrated between the bi-Maxwellian electron energy distribution assumed by the IRM and the electron energy distribution calculated by the OBELIX model. It can therefore be concluded that assuming a bi-Maxwellian electron energy distribution, constituting a cold bulk electron group and a hot secondary electron group, is a good approximation for modeling the HiPIMS discharge
    corecore