281 research outputs found

    Anomalous molecular orbital variation upon adsorption on wide band gap insulator

    Get PDF
    It is commonly believed that organic molecules are physisorbed on the ideal non-polar surfaces of wide band gap insulators with limited variation of the electronic properties of the adsorbate molecule. On the basis of first principles calculations within density functional theory (DFT) and GWGW approximation, we show that this is not generally true. We find that the molecular frontier orbitals undergo significant changes when a hydroxy acid (here we chose gluconic acid) is adsorbed on MgSO4_4â‹…\cdotH2_2O(100) surface due to the complex interaction between the molecule and the insulating surface. The predicted trend of the adsorption effect on the energy gap obtained by DFT is reversed when the surface polarization effect is taken into account via the many-body corrections.Comment: 5 pages, 3 figure

    Li Diffusion in Various Polymorphs of LiTiS2: Insights from Theory

    Get PDF
    In the present contribution, the stoichiometric and defect properties in 1T, c and 3R polymorphs of lithium titanium disulphide (LixTiS2) are investigated theoretically with periodic quantum chemical methods

    Geometries of third-row transition-metal complexes from density-functional theory

    Get PDF
    A set of 41 metal-ligand bond distances in 25 third-row transition-metal complexes, for which precise structural data are known in the gas phase, is used to assess optimized and zero-point averaged geometries obtained from DFT computations with various exchange-correlation functionals and basis sets. For a given functional (except LSDA) Stuttgart-type quasi-relativistic effective core potentials and an all-electron scalar relativistic approach (ZORA) tend to produce very similar geometries. In contrast to the lighter congeners, LSDA affords reasonably accurate geometries of 5d-metal complexes, as it is among the functionals with the lowest mean and standard deviations from experiment. For this set the ranking of some other popular density functionals, ordered according to decreasing standard deviation, is BLYP > VSXC > BP86 approximate to BPW91 approximate to TPSS approximate to B3LYP approximate to PBE > TPSSh > B3PW91 approximate to B3P86 approximate to PBE hybrid. In this case hybrid functionals are superior to their nonhybrid variants. In addition, we have reinvestigated the previous test sets for 3d- (Buhl M.; Kabrede, H. J. Chem. Theory Comput. 2006, 2, 1282-1290) and 4d- (Waller, M. P.; Buhl, M. J. Comput. Chem. 2007,28,1531-1537) transition-metal complexes using all-electron scalar relativistic DFT calculations in addition to the published nonrelativistic and ECP results. For this combined test set comprising first-, second-, and third-row metal complexes, B3P86 and PBE hybrid are indicated to perform best. A remarkably consistent standard deviation of around 2 pm in metal-ligand bond distances is achieved over the entire set of d-block elements.PostprintPeer reviewe

    Electric field gradient calculations for LixTiS2 and comparison with 7Li NMR results

    Get PDF
    The elements of the electric field gradient tensor at Li position in the intercalation compound LixTiS2 (with x=0.25, 0.33, 0.67, and 1.0) were calculated with first-principles methods and periodic supercell models. The theoretical results obtained with density functional and Hartree-Fock hybrid methods were compared with experimental field gradients extracted from 7Li NMR spectra from the literature and from our measurements presented here. The dependence of calculated field gradients on the basis set and the explicit form of the exchange-correlation density functional was investigated. In agreement with earlier studies a pronounced effect of polarization functions at the Li site was observed. After optimization of internal degrees of freedom in LiTiS2 all methods under consideration give quadrupole coupling constants in close agreement with experiment. For x < 1 the calculated quadrupole coupling constants were found to depend more sensitively on the method which was attributed to differences in the description of spin localization. The calculations allow one to distinguish between Li atoms placed at octahedral and tetrahedral interstitial sites of the host lattice TiS2. © 2004 American Physical Societ

    Tailoring band gaps of insulators by adsorption at surface defects: Benzoic acids on NaCl surfaces

    Get PDF
    The adsorption of benzoic acid and its OH-substituted derivatives, namely, salicylic acid (SA) and parasalicylic acid on various NaCl surfaces has been investigated by density-functional theory with hybrid exchange-correlation functional. The ideal NaCl(100) surface is chemically inert as evidenced by the low binding energies. The molecular adsorption can be enhanced by both an anion vacancy and a surface step site. The bonding between the surface Na and the carboxylic O atom is of covalent character for all adsorption geometries. Our calculations show that the adsorption of SA has the largest binding energy of all three acids due to the additional interaction between Na and the phenolic O atom. Charge transfer between the molecule and the surface is generally very small, except in the presence of an anion vacancy where the unpaired electron is mostly transferred to the adsorbate. Surface defects generally have a strong influence on the electronic structure of the adsorbed molecules. Specifically, the adsorption of SA at [011]-oriented steps can significantly reduce the effective band gap to 1.6 eV due to the up shift of the Cl3p levels at the undercoordinated step edge. Implications of these results to the contact charging effect between wide-band-gap insulators will be discussed. © 2009 The American Physical Society.K+S A

    Local electronic structure in a LiAl O2 single crystal studied with Li7 NMR spectroscopy and comparison with quantum chemical calculations

    Get PDF
    The local electronic structure of a γ−LiAlO2 single crystal was investigated with 7Li nuclear magnetic resonance measurements. We observed different sets of spectra which originate from the four crystallographically equivalent but magnetically inequivalent Li sites per unit cell. We find a coupling constant e2qQ/h=115.1±0.6kHz and an asymmetry parameter η=0.69±0.01. The directions of the principal axes of the electric field gradient tensor at the sites of the Li nuclei have also been determined. We compared these experimental results with quantum chemical calculations at density-functional level and found good agreement. © 2006 The American Physical Society

    Color centers in NaCl by hybrid functionals

    Get PDF
    We present in this work the electronic structure and transition energies (both thermodynamic and optical) of Cl vacancies in NaCl by hybrid density functionals. The underestimated transition energies by the semilocal functional inherited from the band-gap problem are recovered by the PBE0 hybrid functional through the nonlocal exact exchange, whose amount is adjusted to reproduce the experimental band gap. The hybrid functional also gives a better account of the lattice relaxation for the defect systems arising from the reduced self-interaction. On the other hand, the quantitative agreement with experimental vertical transition energy cannot be achieved with hybrid functionals due to the inaccurate descriptions of the ionization energies of the localized defect and the positions of the band edges. © 2010 The American Physical Society.K+S A

    Enhanced conductivity at the interface of Li2O:B2O3 nanocomposites: Atomistic models

    Get PDF
    A theoretical investigation at density-functional level of Li ion conduction at the interfaces in Li2O:B2O3 nanocomposites is presented. The structural disorder at the Li2O(111):B2O3(001) interface leads to reduced defect formation energies for Li vacancies and Frenkel defects compared to Li2O surfaces. The average activation energy for Li+ diffusion in the interface region is in the range of the values for Li2O. It is therefore concluded that the enhanced Li conductivity of Li2O:B2O3 nanocomposites is mainly due to the increased defect concentration. © 2007 The American Physical Society

    The high-temperature transformation from 1T-to 3R-LixTiS2 (x=0.7, 0.9) as observed in situ with neutron powder diffraction

    Get PDF
    Layered titanium disulfide is used as lithium-ion intercalating electrode material in batteries. The room-temperature stable trigonal IT polymorphs of the intercalates LixTiS2(x <= 1) are widely-investigated. However, the rombohedral 3R polymorphs, being stable at higher temperatures for large x, are less well known. In this study, we report on the synthesis of phase-pure 1T-LixTiS2(x = 0.7, 0.9) and its transformation to the 3R phase between 673 and 873 K as monitored using high-temperature neutron powder diffractometry. For the 3R polymorph, full Rietveld refinements show lithium ions to be statistically distributed over octahedral voids at the fractional coordinates 0, 0, 1/2, exclusively. The comparison of Madelung energies with results of periodic quantum-chemical calculations reveals that the evolution of lattice parameters and the room-temperature stability of the IT phase are not governed by electrostatics, but by correlation and polarization. The insights gained do not only elucidate the structure of 3R-LixTiS2, but also help to understand and control polymorphism in layered transition-metal sulfides.DFG, FOR 1277, Mobilität von Lithiumionen in Festkörpern (molife
    • …
    corecore