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A theoretical investigation at density-functional level of Li ion conduction at the interfaces in
Li2O:B2O3 nanocomposites is presented. The structural disorder at the Li2O�111�:B2O3�001� interface
leads to reduced defect formation energies for Li vacancies and Frenkel defects compared to Li2O
surfaces. The average activation energy for Li� diffusion in the interface region is in the range of the
values for Li2O. It is therefore concluded that the enhanced Li conductivity of Li2O:B2O3 nanocomposites
is mainly due to the increased defect concentration.
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In the last decade, ion diffusion in nanocrystalline ce-
ramics has received considerable interest. Conductivity in
ceramic oxides has been observed in single-phase systems
as well as in composites of different components [1–7].
Nanocomposite materials often show enhanced conductiv-
ity compared to the single-phase ceramic oxides which is
attractive with respect to possible applications in battery
systems, fuel cells or sensors. In recent experiments, it has
been observed that the conductivity in Li2O:B2O3 [1–3]
and Li2O:Al2O3 nanocomposites [6] is higher than in
nanocrystalline Li2O, although B2O3 and Al2O3 are insu-
lators. This surprising effect was attributed to the increased
fraction of structurally disordered interfacial regions and
the enhanced surface area of the nanosize particles [3]. In
nanocrystalline Li2O, there are interfaces between similar
crystallites, whereas, Li2O:B2O3 nanocomposites contain
three types of interfaces: between the ionic conductor
grains, between the insulator grains and between the ionic
conductor and the insulator grains.

Several classical models have been employed to de-
scribe the enhanced ionic conductivity in composite mate-
rials. The continuum percolation model was used to
describe the dependence of the dc conductivity of
Li2O:B2O3 nanocrystalline composites on the insulator
concentration [1]. A brick-layer type percolation model
treating both the micro- and the nanocrystalline composites
on the same footing [4] is also able to reproduce the
experimental results for the conductivity as a function of
composition. In a recent investigation [5], a more sophis-
ticated Voronoi approach was used. All these stochastic
models do not explicitly take into account the structure of
the nanoparticles and of their surfaces. The aim of the
present study was to investigate the effect of the atomic
structure in the interface region on the ion mobility. We
have developed atomistic models of the Li2O:B2O3 nano-
composite based on periodic slabs. Investigations were
performed to clarify whether the observed enhancement
of Li conductivity in the Li2O:B2O3 interface is due to a

higher defect concentration (thermodynamically con-
trolled) or to smaller activation barriers for local hopping
processes (kinetically controlled). Models as proposed in
the present study allow a direct simulation of the defect
formation and mobility at atomic scale without any experi-
mental input. They can give insight into the local bonding
situation at the interface which is difficult to obtain from
experiments.

We have modeled [8] the Li2O:B2O3 nanocomposite
interface as a combination of the energetically favorable
Li2O�111� surface [14] and the most commensurate
B2O3�001� surface. A 4� 4 supercell of the primitive
Li2O�111� surface unit cell with surface lattice parameters
a � b � 12:9 �A was used as model for the Li2O surface
[15]. The B2O3�001� surface was modeled with a 3� 3
supercell (a � b � 13:1 �A). Thus with the present combi-
nation of surface supercells, the lattice mismatch is only
1.3%. It is assumed that the nanoparticles can adjust their
structure to minimize surface stress. Therefore the inter-
layer distance Z and the common surface lattice parameters
a � b were optimized [16]. Our model is infinite in two
dimensions but nonperiodic in the direction of the surface
normal. The atoms in the uppermost and lowest layers are
exposed to vacuum. We therefore divided the atomic layers
into an interface region and an outer region. The interface
region containing 75 atoms is marked with a box in
Fig. 1(a). It consists of two Li layers and one O layer of
the Li2O surface and one B layer and two O layers of the
B2O3 surface. The Li layer close to the B2O3 surface is
denoted as first layer, the other as second layer. All atoms
in the interface region are fully relaxed. The remaining
atoms in the outermost layers are kept fixed at bulklike
positions in order to simulate the inner part of the nano-
particles. The final optimized structure is shown in
Fig. 1(b). To our knowledge, this is the first atomistic
model for the interface region between ionic conductor
and insulator grains [19]. Metal-oxide interfaces and
insulator-insulator oxide interfaces have been studied be-
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fore with slab models at density-functional theory level and
with classical force-fields [21,22].

As a main result of the optimization, we observe the
formation of a new boron-oxygen bond in the interface
region. One of the oxygen atoms of the Li2O surface
[marked by an arrow in Fig. 1(b)] is pulled out of the
surface layer towards a neighboring boron atom of the
B2O3 surface. As consequence of this dislocation, the
coordination of a Li atom in the second layer is reduced
from four to three [Li (A) in Fig. 1(b)]. The remaining
fourfold coordinated Li atoms in the second layer are
denoted as type D, E, and F. The threefold-coordinated
lithium atoms of the first layer [B, C, andG in Fig. 1(b)] do
not change their coordination. It is assumed that reduced Li
coordination and geometrical distortion due to the move-
ment of the oxygen atom affect the energetics of defect
formation in the interface region. This was investigated by
calculating the lithium vacancy defect formation energy
EV [23] for types A–G, and the Frenkel formation energy
EF [24] for representative Li atoms (types A and B) in the
interface region. In Table I, the calculated values of EV and
EF of the Li2O:B2O3 nanocomposite are compared with
theoretical values of bulk Li2O [12,17] and the Li2O�111�
surface and also with available experimental data [18]. EV
varies from 5.04 to 5.91 eV for the considered lithium types
of the interface model. As expected, the defect formation
energy for Li�A� with reduced coordination is the smallest
(5.04 eV). Also, the other threefold-coordinated lithium
atoms B, C, and G in the top layer have smaller defect

formation energies (5.08, 5.16, and 5.50 eV, respectively)
than the fourfold coordinated lithium atoms D, E, and F in
the second layer (5.70, 5.63, and 5.91 eV, respectively).
Li�B� and Li�C� are closer to the dislocated oxygen than
Li�G� and, correspondingly, their bond strength is smaller.

For all considered sites EV is smaller in the Li2O:B2O3

interface than in the Li2O bulk (6.0 eV, Table I), and of the
corresponding lithium atoms (A1 and G1) in the Li2O�111�
surface (5.63 and 5.16 eV, respectively). A similar effect
was observed for the Frenkel defect formation (Table I).EF
is much smaller in the Li2O:B2O3 nanocomposite
(1.17 eV) than in bulk Li2O (2.24 eV). Our calculated
bulk value is in agreement with experiment (2.53 eV)
[18], and a previous DFT-LDA study (2.20 eV) [17]. As
found for the vacancy formation, EF in Li2O:B2O3 nano-
composite is smaller than in the Li2O�111� surface
(1.60 eV).

According to the defect formation energies, the interface
region of Li2O:B2O3 nanocomposites contains higher con-
centrations of both defect types than bulk Li2O and the
Li2O�111� surface. The similarity of the trends obtained for
EV and EF is not surprising since both defects involve the
formation of an empty Li lattice site [25]. In previous
theoretical work [17] it has been shown that the migration
barrier of the Li interstitial mechanism is higher than that
of the vacancy mechanism. This is supported by more
recent experimental investigations on the Li� migration
in Li2O [3], Li2O:B2O3 [1,2] and Li2O:Al2O3 nanocompo-
sites [6] where a vacancy mechanism was proposed.
Therefore we concentrated on the vacancy mechanism in
our model calculations. As first step, a single neutral Li
atom was removed from the Li2O:B2O3 slab. This is a

TABLE I. Calculated formation energies of a Li vacancy, EV (eV) and a Frenkel defect, EF (eV)

Li2O:B2O3
a Li2O Li2O�111�a

Li A B C D E F G Calc. exp. A1 G1
EV 5.04 5.08 5.16 5.70 5.63 5.91 5.50 6.0 [12] 5.15 5.63
EF 1.17 2.20 [17], 2.24a 2.53 [18] 1.60

aThis work.

FIG. 1. The interface of Li2O:B2O3 nanocomposite; (a) after
the optimization of Z and a and (b) after optimization of the
interface region taking the optimized Z and a. Dark gray, black,
and light gray spheres represent Li, O, and B, respectively.

FIG. 2. Possible pathways for Li� migration in the Li2O:B2O3

interface.
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simplification of the real situation where Li remains in the
lattice and may affect the movement of other Li atoms. But
in the present investigation, we are only interested in the
activation barriers for hopping processes between regular
lattice sites. Li migration may then occur from a tetrahedral
site to a cation vacancy in the interface which is threefold-
coordinated to oxygen atoms, or vice versa. Another pos-
sibility is a hopping process between an occupied and an
unoccupied threefold-coordinated site of the first layer. In
both cases, one or two oxygen atoms are shared by the
migrating Li� and the cation vacancy [26].

In Fig. 2, selected lithium atoms are labeled to represent
possible migration pathways for the Li� movement in the
interface of Li2O:B2O3 nanocomposite. As possible start-
ing points, we selected two representative Li atoms, the
second layer Li�A� which becomes threefold-coordinated
due to the dislocation of one oxygen (O4), and the first-
layer Li�G� which has a large distance (6.45 Å) from the
dislocated oxygen. Migration of Li� can occur in a zigzag
pathway, via hopping from site A$ B, A$ C, A$ E,
G$ B,G$ C1, orG$ E1. Alternatively, migration can
occur straight along the x direction (A$ D or G$ D1),
or along the y direction (A$ F or G$ F1). The calcu-
lated values for the activation energy, �E, for all these
possible migration pathways are presented in Table II.
Since the hopping processes can occur in both directions
and the two Li sites are not equivalent in the Li2O:B2O3

interface, we distinguished �Eab for the process (a! b)
and �Eba for the migration in opposite direction [27].
Their smaller activation energies (0.1–1.2 eV) indicate
that the zigzag pathways are more accessible than the
migrations along the straight lines, either along the x
direction (�E � 1:4–2:0 eV) or the y direction (�E �
1:7–2:7 eV). Several calculated �E, e.g., for the processes
B! A (0.10 eV) and C1! G (0.22 eV), are much smaller
than the experimental �E of nanocrystalline Li2O, 0.31 eV
[3]. They are also smaller than the measured activation
enthalpies in Li2O:B2O3 nanocomposites (0:34� 0:04 eV
[2]) and in Li2O:Al2O3 nanocomposites (0:30� 0:02 eV
[6]). However, it has to be taken into account that in these
experiments an average over the manifold of local hopping
processes is obtained. Since the measurements have been
performed at 300–500 K, it can be assumed that activation
energies larger than 1 eV cannot be overcome in the time
scale of NMR experiments. This excludes all straight path-
ways and also some of the zigzag pathways. The average of

the remaining nine calculated activation energies is
0.28 eV, in close agreement to the reported experimental
values.

In summary, we have developed an atomistic model of
nanocrystalline Li2O:B2O3 composites. With this model, a
quantum-chemical investigation of the defect properties
and ionic conductivity in the interface region was per-
formed. It was found that Li-O bonds are weakened and
simultaneously B-O bonds are formed at the boundary
between the two surfaces. This preference of oxygen bond-
ing with B (or Al in Li2O:Al2O3) plays a key role in
generating low-coordinated Li [28]. The removal of sur-
face oxygen from Li2O is responsible for the increased
vacancy defect concentration in Li2O:B2O3 (or
Li2O:Al2O3) nanocomposite materials. We propose that
nanocomposites of ionic compounds (containing weakly
bound and therefore mobile cations) with highly covalent
compounds (with strong metal- or nonmetal-oxygen
bonds) are in general promising candidates for high ionic
conductivity. Our model calculations show that the most
likely mechanism for Li� migration is in a zigzag pathway
rather than in a straight line along a direction parallel to the
interface plane. The averaged calculated activation energy
for Li� migration in the Li2O:B2O3 interface is similar to
the experimental values of bulk Li2O, Li2O:B2O3 and
Li2O:Al2O3 nanocomposites. We therefore conclude that
the experimentally observed enhanced Li mobility in the
Li2O:B2O3 interface region is thermodynamically and not
kinetically controlled.
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4.573–4.619 Å [12]. The B2O3 slab model has five atomic
layers and contains 9 f.u. The surface lattice parameters
a � b � 13:1 �A correspond to the optimized bulk struc-
ture at PW1PW level, abulk � 4:35 (exp. 4.34) Å, cbulk �
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