54 research outputs found

    Enhancing the performance of the Digital Cherenkov Viewing Device : Detecting partial defects in irradiated nuclear fuel assemblies using Cherenkov light

    No full text
    The Digital Cherenkov Viewing Device (DCVD) is an instrument used by authority safeguards inspectors to verify irradiated nuclear fuel assemblies in wet storage based on Cherenkov light emission. It is frequently used to verify that parts of an assembly have not been diverted, which is done by comparing the measured Cherenkov light intensity to a predicted one. This thesis presents work done to further enhance the verification capability of the DCVD, and has focused on developing a second-generation prediction model (2GM), used to predict the Cherenkov light intensity of an assembly. The 2GM was developed to take into account the irradiation history, assembly type and beta decays, while still being usable to an inspector in-field. The 2GM also introduces a method to correct for the Cherenkov light intensity emanating from neighbouring assemblies. Additionally, a method to simulate DCVD images has been seamlessly incorporated into the 2GM. The capabilities of the 2GM has been demonstrated on experimental data. In one verification campaign on fuel assemblies with short cooling time, the first-generation model showed a Root Mean Square error of 15.2% when comparing predictions and measurements. This was reduced by the 2GM to 7.8% and 8.1%, for predictions with and without near-neighbour corrections. A simplified version of the 2GM for single assemblies will be included in the next version of the official DCVD software, which will be available to inspectors shortly. The inclusion of the 2GM allows the DCVD to be used to verify short-cooled assemblies and assemblies with unusual irradiation history, with increased accuracy. Experimental measurements show that there are situations when the intensity contribution due to neighbours is significant, and should be included in the intensity predictions. The image simulation method has been demonstrated to also allow the effect of structural differences in the assemblies to be considered in the predictions, allowing assemblies of different designs to be compared with enhanced accuracy

    Studies of Cherenkov light production in irradiated nuclear fuel assemblies

    No full text
    The Digital Cherenkov Viewing Device (DCVD) is an instrument used by authority inspectors to assess irradiated nuclear fuel assemblies in wet storage for the purpose of nuclear safeguards. Originally developed to verify the presence of fuel assemblies with long cooling times and low burnup, the DCVD accuracy is sufficient for partial defect verification, where one verifies that part of an assembly has not been diverted. Much of the recent research regarding the DCVD has been focused on improving its partial defect detection capabilities. The partial-defect analysis procedure currently used relies on comparisons between a predicted Cherenkov light intensity and the intensity measured with the DCVD. Enhanced prediction capabilities may thus lead to enhanced verification capabilities. Since the currently used prediction model is based on rudimentary correlations between the Cherenkov light intensity and the burnup and cooling time of the fuel assembly, there are reasons to develop alternative models taking more details into account to more accurately predict the Cherenkov light intensity. This work aims at increasing our understanding of the physical processes leading to the Cherenkov light production in irradiated nuclear fuel assemblies in water. This has been investigated through simulations, which in the future are planned to be complemented with measurements. The simulations performed reveal that the Cherenkov light production depends on fuel rod dimensions, source distribution in the rod and initial decay energy in a complex way, and that all these factors should be modelled to accurately predict the light intensity. The simulations also reveal that for long-cooled fuel, Y-90 beta-decays may contribute noticeably to the Cherenkov light intensity, a contribution which has not been considered before. A prediction model has been developed in this work taking fuel irradiation history, fuel geometry and Y-90 beta-decay into account. These predictions are more detailed than the predictions based on the currently used prediction model. The predictions with the new model can be done quickly enough that the method can be used in the field. The new model has been used during one verification campaign, and showed superior performance to the currently used prediction model. Using the currently used model for this verification, the difference between measured and predicted intensity had a standard deviation of 15.4% of the measured value, and using the new model this was reduced to 8.4%

    Enhancing the performance of the Digital Cherenkov Viewing Device : Detecting partial defects in irradiated nuclear fuel assemblies using Cherenkov light

    No full text
    The Digital Cherenkov Viewing Device (DCVD) is an instrument used by authority safeguards inspectors to verify irradiated nuclear fuel assemblies in wet storage based on Cherenkov light emission. It is frequently used to verify that parts of an assembly have not been diverted, which is done by comparing the measured Cherenkov light intensity to a predicted one. This thesis presents work done to further enhance the verification capability of the DCVD, and has focused on developing a second-generation prediction model (2GM), used to predict the Cherenkov light intensity of an assembly. The 2GM was developed to take into account the irradiation history, assembly type and beta decays, while still being usable to an inspector in-field. The 2GM also introduces a method to correct for the Cherenkov light intensity emanating from neighbouring assemblies. Additionally, a method to simulate DCVD images has been seamlessly incorporated into the 2GM. The capabilities of the 2GM has been demonstrated on experimental data. In one verification campaign on fuel assemblies with short cooling time, the first-generation model showed a Root Mean Square error of 15.2% when comparing predictions and measurements. This was reduced by the 2GM to 7.8% and 8.1%, for predictions with and without near-neighbour corrections. A simplified version of the 2GM for single assemblies will be included in the next version of the official DCVD software, which will be available to inspectors shortly. The inclusion of the 2GM allows the DCVD to be used to verify short-cooled assemblies and assemblies with unusual irradiation history, with increased accuracy. Experimental measurements show that there are situations when the intensity contribution due to neighbours is significant, and should be included in the intensity predictions. The image simulation method has been demonstrated to also allow the effect of structural differences in the assemblies to be considered in the predictions, allowing assemblies of different designs to be compared with enhanced accuracy

    Development of a Beam Loss Monitoring system for CTF-3 TBL

    No full text
    The Compact Linear Collider (CLIC) study is a feasibility study for a new linear accelerator that aims to reach a center-of-mass collision energy of 3 TeV. To keep the length of the accelerator reasonable, a high accelerating gradient of 100 MeV/m is provided by a novel acceleration scheme, where power is extracted from a high-intensity drive beam to accelerate a high-energy main beam. The Test Beam Line (TBL) at the CLIC Test Facility 3 (CTF-3) is an experimental beamline constructed to test the technology for deceleration and power extraction of the drive beam. A Beam Loss Monitoring (BLM) system is currently under development to investigate the amount of beam loss at the TBL, with the aim of providing information about the stability of the beam under deceleration. These detectors are placed outside of the accelerator, and measure the secondary particle shower created by particles lost in the TBL. The amount of particles that can be detected by the BLM detectors was simulated using the Monte Carlo transport code FLUKA. Several different loss scenarios were simulated, in order to calculate the intensity and composition of the secondary particle shower at the detector locations. Various approximations for the sensitivity of the detectors were considered, and were combined with the simulated intensity of the shower to estimate the detector output signal per lost particle. These values were compared with data taken by the TBL BLM system, to estimate the amount of beam lost while the TBL is running

    Enhancing the performance of the Digital Cherenkov Viewing Device : Detecting partial defects in irradiated nuclear fuel assemblies using Cherenkov light

    No full text
    The Digital Cherenkov Viewing Device (DCVD) is an instrument used by authority safeguards inspectors to verify irradiated nuclear fuel assemblies in wet storage based on Cherenkov light emission. It is frequently used to verify that parts of an assembly have not been diverted, which is done by comparing the measured Cherenkov light intensity to a predicted one. This thesis presents work done to further enhance the verification capability of the DCVD, and has focused on developing a second-generation prediction model (2GM), used to predict the Cherenkov light intensity of an assembly. The 2GM was developed to take into account the irradiation history, assembly type and beta decays, while still being usable to an inspector in-field. The 2GM also introduces a method to correct for the Cherenkov light intensity emanating from neighbouring assemblies. Additionally, a method to simulate DCVD images has been seamlessly incorporated into the 2GM. The capabilities of the 2GM has been demonstrated on experimental data. In one verification campaign on fuel assemblies with short cooling time, the first-generation model showed a Root Mean Square error of 15.2% when comparing predictions and measurements. This was reduced by the 2GM to 7.8% and 8.1%, for predictions with and without near-neighbour corrections. A simplified version of the 2GM for single assemblies will be included in the next version of the official DCVD software, which will be available to inspectors shortly. The inclusion of the 2GM allows the DCVD to be used to verify short-cooled assemblies and assemblies with unusual irradiation history, with increased accuracy. Experimental measurements show that there are situations when the intensity contribution due to neighbours is significant, and should be included in the intensity predictions. The image simulation method has been demonstrated to also allow the effect of structural differences in the assemblies to be considered in the predictions, allowing assemblies of different designs to be compared with enhanced accuracy

    Telecommunication, Networking and Integration

    No full text

    Partial defect detection using the DCVD and a segmented Region-Of-Interest

    No full text
    The Digital Cherenkov Viewing Device (DCVD) is a safeguards instrument available to international nuclear safeguards inspectors. It is frequently used to verify fuel on the gross defect level, and approved for partial defect verification, i.e. to assess that parts of a fuel assembly have not been diverted. The current limit for partial defect verification with the DCVD is on the 50% level. In the verification process, an analysis methodology is used where the inspector places a Region-Of-Interest (ROI) around the fuel assembly and assesses the total Cherenkov light intensity within this region. The intensity is then compared to a predicted value, and deviations from the predicted value are used to flag fuel assemblies for further investigations. In this work, we investigate a slightly different analysis approach, where the ROI is split into two or three segments to more accurately capture changes in light intensity in different regions of the captured image. The purpose is to increase the sensitivity of the DCVD to partial defects below the 50% level. Based on simulations of a Pressurised Water Reactor 17x17 fuel assembly, we conclude that a partial defect on the 30% level decreases the Cherenkov light intensity by at least 15% using one single ROI, by at least 20% using a ROI with two segments, and by at least 22% using a ROI with three segments. The analysis approach using two or three ROI segments instead of one thus appears to be more sensitive to partial defects, and can enable more accurate detection of partial defects on the 50% level as well as partial defect detection below the 50% level.Validation of the approach using a limited set of measurement data of intact fuel assemblies supports that detection of light intensity reductions by 20% and 22% is possible, while ensuring that the false positive rate is kept sufficiently low. However, an optimization of ROI segment splits as well as a more extended validation of the approach is required before the method can be considered reliable and applicable to all fuel assemblies that the DCVD can verify today.

    Telecommunication, Networking and Integration

    No full text

    On Cherenkov light production by irradiated nuclear fuel rods

    No full text
    Safeguards verification of irradiated nuclear fuel assemblies in wet storage is frequently done by measuring the Cherenkov light in the surrounding water produced due to radioactive decays of fission products in the fuel. This paper accounts for the physical processes behind the Cherenkov light production caused by a single fuel rod in wet storage, and simulations are presented that investigate to what extent various properties of the rod affect the Cherenkov light production. The results show that the fuel properties has a noticeable effect on the Cherenkov light production, and thus that the prediction models for Cherenkov light production which are used in the safeguards verifications could potentially be improved by considering these properties.It is concluded that the dominating source of the Cherenkov light is gamma-ray interactions with electrons in the surrounding water. Electrons created from beta decay may also exit the fuel and produce Cherenkov light, and e.g. Y-90 was identified as a possible contributor to significant levels of the measurable Cherenkov light in long-cooled fuel. The results also show that the cylindrical, elongated fuel rod geometry results in a non-isotropic Cherenkov light production, and the light component parallel to the rod's axis exhibits a dependence on gamma-ray energy that differs from the total intensity, which is of importance since the typical safeguards measurement situation observes the vertical light component. It is also concluded that the radial distributions of the radiation sources in a fuel rod will affect the Cherenkov light production
    corecore