399 research outputs found

    Data sources for rescuing the rich heritage of Mediterranean historical surface climate data

    Get PDF
    10.1002/gdj3.4Availability of long-term and high-quality instrumental climate records is still insufficient and the rich heritage of meteorological surface observations is largely underexploited in many parts of the world. This is particularly striking over the Greater Mediterranean region (GMR), where meteorological observations have been taken since the 18th century at some locations. The lack of high quality and long series here is despite this region being regarded as a climate change hot spot. This article mainly assesses relevant sources containing Mediterranean historical climate data and metadata either from online repositories worldwide or physical archives, with the emphasis here on the rich holdings kept at French archives. A particular case study is the data rescue (DARE) program undertaken by the Algerian National Meteorological Service, as well as some of the past and ongoing projects and initiatives aimed at enhancing climate data availability and accessibility over the GMR. Our findings point to the high potential for undertaking DARE activities over the GMR and the need for bringing longer and higher quality climate time series to support a diverse number of scientific and technical assessments and policies

    Strong-disorder renormalization for interacting non-Abelian anyon systems in two dimensions

    Get PDF
    We consider the effect of quenched spatial disorder on systems of interacting, pinned non-Abelian anyons as might arise in disordered Hall samples at filling fractions \nu=5/2 or \nu=12/5. In one spatial dimension, such disordered anyon models have previously been shown to exhibit a hierarchy of infinite randomness phases. Here, we address systems in two spatial dimensions and report on the behavior of Ising and Fibonacci anyons under the numerical strong-disorder renormalization group (SDRG). In order to manage the topology-dependent interactions generated during the flow, we introduce a planar approximation to the SDRG treatment. We characterize this planar approximation by studying the flow of disordered hard-core bosons and the transverse field Ising model, where it successfully reproduces the known infinite randomness critical point with exponent \psi ~ 0.43. Our main conclusion for disordered anyon models in two spatial dimensions is that systems of Ising anyons as well as systems of Fibonacci anyons do not realize infinite randomness phases, but flow back to weaker disorder under the numerical SDRG treatment.Comment: 12 pages, 12 figures, 1 tabl

    An ensemble-based approach to climate reconstructions

    Get PDF
    Data assimilation is a promising approach to obtain climate reconstructions that are both consistent with observations of the past and with our understanding of the physics of the climate system as represented in the climate model used. Here, we investigate the use of ensemble square root filtering (EnSRF) – a technique used in weather forecasting – for climate reconstructions. We constrain an ensemble of 29 simulations from an atmosphere-only general circulation model (GCM) with 37 pseudo-proxy temperature time series. Assimilating spatially sparse information with low temporal resolution (semi-annual) improves the representation of not only temperature, but also other surface properties, such as precipitation and even upper air features such as the intensity of the northern stratospheric polar vortex or the strength of the northern subtropical jet. Given the sparsity of the assimilated information and the limited size of the ensemble used, a localisation procedure is crucial to reduce "overcorrection" of climate variables far away from the assimilated information

    Minimum-Cost Coverage of Point Sets by Disks

    Full text link
    We consider a class of geometric facility location problems in which the goal is to determine a set X of disks given by their centers (t_j) and radii (r_j) that cover a given set of demand points Y in the plane at the smallest possible cost. We consider cost functions of the form sum_j f(r_j), where f(r)=r^alpha is the cost of transmission to radius r. Special cases arise for alpha=1 (sum of radii) and alpha=2 (total area); power consumption models in wireless network design often use an exponent alpha>2. Different scenarios arise according to possible restrictions on the transmission centers t_j, which may be constrained to belong to a given discrete set or to lie on a line, etc. We obtain several new results, including (a) exact and approximation algorithms for selecting transmission points t_j on a given line in order to cover demand points Y in the plane; (b) approximation algorithms (and an algebraic intractability result) for selecting an optimal line on which to place transmission points to cover Y; (c) a proof of NP-hardness for a discrete set of transmission points in the plane and any fixed alpha>1; and (d) a polynomial-time approximation scheme for the problem of computing a minimum cost covering tour (MCCT), in which the total cost is a linear combination of the transmission cost for the set of disks and the length of a tour/path that connects the centers of the disks.Comment: 10 pages, 4 figures, Latex, to appear in ACM Symposium on Computational Geometry 200

    The 1986?1989 ENSO cycle in a chemical climate model

    No full text
    International audienceA pronounced ENSO cycle occurred from 1986 to 1989, accompanied by distinct dynamical and chemical anomalies in the global troposphere and stratosphere. Reproducing these effects with current climate models not only provides a model test but also contributes to our still limited understanding of ENSO's effect on stratosphere-troposphere coupling. We performed several sets of ensemble simulations with a chemical climate model (SOCOL) forced with global sea surface temperatures. Results were compared with observations and with large-ensemble simulations performed with an atmospheric general circulation model (MRF9). We focus our analysis on the extratropical stratosphere and its coupling with the troposphere. In this context, the circulation over the North Atlantic sector is particularly important. Observed differences between the El Niño winter 1987 and the La Niña winter 1989 include a negative North Atlantic Oscillation index with corresponding changes in temperature and precipitation patterns, a weak polar vortex, a warm Arctic middle stratosphere, negative and positive total ozone anomalies in the tropics and at middle to high latitudes, respectively, as well as anomalous upward and poleward Eliassen-Palm (EP) flux in the midlatitude lower stratosphere. Most of the tropospheric features are well reproduced in the ensemble means in both models, though the amplitudes are underestimated. In the stratosphere, the SOCOL simulations compare well with observations with respect to zonal wind, temperature, EP flux, and ozone, but magnitudes are underestimated in the middle stratosphere. The polar vortex strength is well reproduced, but within-ensemble variability is too large for obtaining a significant signal in Arctic temperature and ozone. With respect to the mechanisms relating ENSO to stratospheric circulation, the results suggest that both, upward and poleward components of anomalous EP flux are important for obtaining the stratospheric signal and that an increase in strength of the Brewer-Dobson circulation is part of that signal

    Description of the ERA-CLIM historical upper-air data

    Get PDF
    Historical, i.e. pre-1957, upper-air data are a valuable source of information on the state of the atmosphere, in some parts of the world dating back to the early 20th century. However, to date, reanalyses have only partially made use of these data, and only of observations made after 1948. Even for the period between 1948 (the starting year of the NCEP/NCAR (National Centers for Environmental Prediction/National Center for Atmospheric Research) reanalysis) and the International Geophysical Year in 1957 (the starting year of the ERA-40 reanalysis), when the global upper-air coverage reached more or less its current status, many observations have not yet been digitised. The Comprehensive Historical Upper-Air Network (CHUAN) already compiled a large collection of pre-1957 upper-air data. In the framework of the European project ERA-CLIM (European Reanalysis of Global Climate Observations), significant amounts of additional upper-air data have been catalogued (> 1.3 million station days), imaged (> 200 000 images) and digitised (> 700 000 station days) in order to prepare a new input data set for upcoming reanalyses. The records cover large parts of the globe, focussing on, so far, less well covered regions such as the tropics, the polar regions and the oceans, and on very early upper-air data from Europe and the US. The total number of digitised/inventoried records is 61/101 for moving upper-air data, i.e. data from ships, etc., and 735/1783 for fixed upper-air stations. Here, we give a detailed description of the resulting data set including the metadata and the quality checking procedures applied. The data will be included in the next version of CHUAN. The data are available at <a href="http://dx.doi.org/10.1594/PANGAEA.821222"target="_blank">doi:10.1594/PANGAEA.821222</a>
    • …
    corecore