187 research outputs found
Heat stress and feeding behaviour of dairy cows in late lactation
Heat stress is one of the most important problems that dairy cows have to face and the use of cooling systems is becoming more and more important. The first reaction that has the animal to cope with the environmental variations is to modify its behaviour. This study was aimed to investigate the effect of heat stress and a cooling system on the feeding behaviour of Italian Holstein Friesian dairy cows in late lactation. Two experiments were performed. In the first experiment, eight dairy cows were firstly kept 7 d under thermoneutral condition, and then under mild heat stress (temperature humidity index, THI, ranging between 72 and 78) for others 7 d. The second experiment consisted of 8 dairy cows used in a two-period cross-over design where the treatment was the use or not of a sprinkler system for cooling cows under mild heat stress. Cows were equipped with a noseband pressure sensor able to detect rumination and eating time, number of rumination and eating chews, number of rumination boluses and rumination intensity. Heat stress reduced rumination time, number of rumination chews and boluses (p <.05), and tended to reduce the number of eating chews (p <.10). Cooled cows increased rumination and eating time (p <.05), rumination intensity (p <.01), and the number of rumination and eating chews (p <.05). In conclusion, feeding behaviour was deeply influenced even by mild heat stress, which was effectively improved by the use of a sprinkler system.HIGHLIGHTS Mild heat stress reduced rumination time, number of rumination chews and boluses of dairy cows in late lactation Cooling cows with sprinklers was effective in alleviating heat stress in terms of feeding behaviour
Patient empowerment in risk management: a mixed-method study to explore mental health professionals' perspective
BACKGROUND: In the last years, patients' empowerment has been increasingly recognized as a crucial dimension of patient-centered healthcare and patient safety. Nevertheless, little work has been done so far in the field of patient safety to investigate strategies for empowering psychiatric patients. Therefore, the aim of this study was to identify, by using focus groups, whether and how psychiatric patients' empowerment can improve risk management according to the perspective of healthcare providers (HPs). METHODS: A mixed-method approach composed of a qualitative data collection method (i.e., focus groups) and a quantitative analysis technique (i.e., inductive content analysis) was applied. HPs working in mental health settings shared their perspectives on psychiatric patients' empowerment in risk management. After the transcription of the audio-taped discussions and the subsequent development of a hierarchical four-level coding system (strategy versus critical issue, thematic area, category, subcategory), two independent raters codified the transcripts and synthesized the content. Absolute frequencies are reported for quantitative data. RESULTS: Twelve focus groups consisting of six to ten participants, each with an overall sample size of 95 participants (65 women; average age\u2009\ub1\u2009SD 47\u2009\ub1\u20099\u2009yrs), were enrolled. A total of 1252 participants' verbal contributions (i.e., units of analysis) were assessed. Strategies and critical issues (Level 1) were mentioned almost equally (52 and 48%, respectively) by the HPs. Most of the contributions at Level 2 referred to the thematic areas Treatment and Cure (69%) and Emergency Management (21%). In the area Treatment and Cure, the category Therapeutic Compliance (Level 3) was discussed in one third of all contributions. CONCLUSIONS: Our results suggest that HPs consider patients as crucial partners in risk management and expect them to play a key role in actively enhancing safety. Policy makers should be aware that risk management in mental health settings particularly relies on the therapeutic relationship between HPs and patients. Therefore, allocating sufficient human and financial resources to mental health care aiming to further support the relationship between patients and HPs is of utmost importance
PΞ±x6 Expression in Postmitotic Neurons Mediates the Growth of Axons in Response to SFRP1
During development, the mechanisms that specify neuronal subclasses are coupled to those that determine their axonal response to guidance cues. Pax6 is a homedomain transcription factor required for the specification of a variety of neural precursors. After cell cycle exit, Pax6 expression is often shut down in the precursor progeny and most postmitotic neurons no longer express detectable levels of the protein. There are however exceptions and high Pax6 protein levels are found, for example, in postmitotic retinal ganglion cells (RGCs), dopaminergic neurons of the olfactory bulb and the limbic system in the telencephalon. The function of Pax6 in these differentiating neurons remains mostly elusive. Here, we demonstrate that Pax6 mediates the response of growing axons to SFRP1, a secreted molecule expressed in several Pax6-positive forebrain territories. Forced expression of Pax6 in cultured postmitotic cortical neurons, which do not normally express Pax6, was sufficient to increment axonal length. Growth was blocked by the addition of anti-SFRP1 antibodies, whereas exogenously added SFRP1 increased axonal growth of Pax6-transfected neurons but not that of control or untransfected cortical neurons. In the reverse scenario, shRNA-mediated knock-down of Pax6 in mouse retinal explants specifically abolished RGCs axonal growth induced by SFRP1, but had no effect on RGCs differentiation and it did not modify the effect of Shh or Netrin on axon growth. Taken together these results demonstrate that expression of Pax6 is necessary and sufficient to render postmitotic neurons competent to respond to SFRP1. These results reveal a novel and unexpected function of Pax6 in postmitotic neurons and situate Pax6 and SFRP1 as pair regulators of axonal connectivity
Myofibroblast-Derived SFRP1 as Potential Inhibitor of Colorectal Carcinoma Field Effect
Epigenetic changes of stromal-epithelial interactions are of key importance in the regulation of colorectal carcinoma (CRC) cells and morphologically normal, but genetically and epigenetically altered epithelium in normal adjacent tumor (NAT) areas. Here we demonstrated retained protein expression of well-known Wnt inhibitor, secreted frizzled-related protein 1 (SFRP1) in stromal myofibroblasts and decreasing epithelial expression from NAT tissues towards the tumor. SFRP1 was unmethylated in laser microdissected myofibroblasts and partially hypermethylated in epithelial cells in these areas. In contrast, we found epigenetically silenced myofibroblast-derived SFRP1 in CRC stroma. Our results suggest that the myofibroblast-derived SFRP1 protein might be a paracrine inhibitor of epithelial proliferation in NAT areas and loss of this signal may support tumor proliferation in CRC
WNT signalling in prostate cancer
Genome sequencing and gene expression analyses of prostate tumours have highlighted the potential importance of genetic and epigenetic changes observed in WNT signalling pathway components in prostate tumours-particularly in the development of castration-resistant prostate cancer. WNT signalling is also important in the prostate tumour microenvironment, in which WNT proteins secreted by the tumour stroma promote resistance to therapy, and in prostate cancer stem or progenitor cells, in which WNT-Ξ²-catenin signals promote self-renewal or expansion. Preclinical studies have demonstrated the potential of inhibitors that target WNT receptor complexes at the cell membrane or that block the interaction of Ξ²-catenin with lymphoid enhancer-binding factor 1 and the androgen receptor, in preventing prostate cancer progression. Some WNT signalling inhibitors are in phase I trials, but they have yet to be tested in patients with prostate cancer
Inhibition of Wnt/Ξ²-Catenin Signaling by a Soluble Collagen-Derived Frizzled Domain Interacting with Wnt3a and the Receptors Frizzled 1 and 8
The Wnt/Ξ²-catenin pathway controls cell proliferation, death and differentiation. Several families of extracellular proteins can antagonize Wnt/Ξ²-catenin signaling, including the decoy receptors known as secreted frizzled related proteins (SFRPs), which have a cysteine-rich domain (CRD) structurally similar to the extracellular Wnt-binding domain of the frizzled receptors. SFRPs inhibit Wnt signaling by sequestering Wnts through the CRD or by forming inactive complexes with the frizzled receptors. Other endogenous molecules carrying frizzled CRDs inhibit Wnt signaling, such as V3Nter, which is proteolytically derived from the cell surface component collagen XVIII and contains a biologically active frizzled domain (FZC18) inhibiting in vivo cell proliferation and tumor growth in mice. We recently showed that FZC18 expressing cells deliver short-range signals to neighboring cells, decreasing their proliferation in vitro and in vivo through the Wnt/Ξ²-catenin signaling pathway. Here, using low concentrations of soluble FZC18 and Wnt3a, we show that they physically interact in a cell-free system. In addition, soluble FZC18 binds the frizzled 1 and 8 receptors' CRDs, reducing cell sensitivity to Wnt3a. Conversely, inhibition of Wnt/Ξ²-catenin signaling was partially rescued by the expression of full-length frizzled 1 and 8 receptors, but enhanced by the expression of a chimeric cell-membrane-tethered frizzled 8 CRD. Moreover, soluble, partially purified recombinant FZC18_CRD inhibited Wnt3a-induced Ξ²-catenin activation. Taken together, the data indicate that collagen XVIII-derived frizzled CRD shifts Wnt sensitivity of normal cells to a lower pitch and controls their growth
Down-Regulation of the Canonical Wnt Ξ²-Catenin Pathway in the Airway Epithelium of Healthy Smokers and Smokers with COPD
Background: The Wnt pathway mediates differentiation of epithelial tissues; depending on the tissue types, Wnt can either drive or inhibit the differentiation process. We hypothesized that key genes in the Wnt pathway are suppressed in the human airway epithelium under the stress of cigarette smoking, a stress associated with dysregulation of the epithelial differentiated state. Methodology/Principal Findings: Microarrays were used to assess the expression of Wnt-related genes in the small airway epithelium (SAE) obtained via bronchoscopy and brushing of healthy nonsmokers, healthy smokers, and smokers with COPD. Thirty-three of 56 known Wnt-related genes were expressed in the SAE. Wnt pathway downstream mediators b-catenin and the transcription factor 7-like 1 were down-regulated in healthy smokers and smokers with COPD, as were many Wnt target genes. Among the extracellular regulators that suppress the Wnt pathway, secreted frizzled-related protein 2 (SFRP2), was up-regulated 4.3-fold in healthy smokers and 4.9-fold in COPD smokers, an observation confirmed by TaqMan Real-time PCR, Western analysis and immunohistochemistry. Finally, cigarette smoke extract mediated up-regulation of SFRP2 and down-regulation of Wnt target genes in airway epithelial cells in vitro. Conclusions/Significance: Smoking down-regulates the Wnt pathway in the human airway epithelium. In the context that Wnt pathway plays an important role in differentiation of epithelial tissues, the down-regulation of Wnt pathway ma
Methylation and Loss of Secreted Frizzled-Related Protein 3 Enhances Melanoma Cell Migration and Invasion
Wnt signaling is important in development and can also contribute to the initiation and progression of cancer. The Secreted Frizzled Related Proteins (SFRPs) constitute a family of Wnt modulators, crucial for controlling Wnt signaling. Here we investigate the expression and role of SFRP3 in melanoma
Subtype-specific CpG island shore methylation and mutation patterns in 30 breast cancer cell lines
BACKGROUND: Aberrant epigenetic modifications, including DNA methylation, are key regulators of gene activity in tumorigenesis. Breast cancer is a heterogeneous disease, and large-scale analyses indicate that tumor from normal and benign tissues, as well as molecular subtypes of breast cancer, can be distinguished based on their distinct genomic, transcriptomic, and epigenomic profiles. In this study, we used affinity-based methylation sequencing data in 30 breast cancer cell lines representing functionally distinct cancer subtypes to investigate methylation and mutation patterns at the whole genome level. RESULTS: Our analysis revealed significant differences in CpG island (CpGI) shore methylation and mutation patterns among breast cancer subtypes. In particular, the basal-like B type, a highly aggressive form of the disease, displayed distinct CpGI shore hypomethylation patterns that were significantly associated with downstream gene regulation. We determined that mutation rates at CpG sites were highly correlated with DNA methylation status and observed distinct mutation rates among the breast cancer subtypes. These findings were validated by using targeted bisulfite sequencing of differentially expressed genes (n=85) among the cell lines. CONCLUSIONS: Our results suggest that alterations in DNA methylation play critical roles in gene regulatory process as well as cytosine substitution rates at CpG sites in molecular subtypes of breast cancer. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12918-016-0356-2) contains supplementary material, which is available to authorized users
- β¦