781 research outputs found
Multiphase Plasma in Sub-Damped Lyman Alpha Systems: A Hidden Metal Reservoir
We present a VLT/UVES spectrum of a proximate sub-damped Lyman-alpha
(sub-DLA) system at z=2.65618 toward the quasar Q0331-4505
(z_qso=2.6785+/-0.0030). Absorption lines of O I, Si II, Si III, Si IV, C II, C
III, C IV, Fe II, Al II, and O VI are seen in the sub-DLA, which has a neutral
hydrogen column density log N(H I)=19.82+/-0.05. The absorber is at a velocity
of 1820+/-250 km/s from the quasar; however, its low metallicity
[O/H]=-1.64+/-0.07, lack of partial coverage, lack of temporal variations
between observations taken in 2003 and 2006, and non-detection of N V imply the
absorber is not a genuine intrinsic system. By measuring the O VI column
density and assuming equal metallicities in the neutral and ionized gas, we
determine the column density of hot ionized hydrogen in this sub-DLA, and in
two other sub-DLAs with O VI drawn from the literature. Coupling this with
determinations of the typical amount of warm ionized hydrogen in sub-DLAs, we
confirm that sub-DLAs are a more important metal reservoir than DLAs, in total
comprising at least 6-22% of the metal budget at z~2.5.Comment: 5 pages, 3 color figures, accepted for publication in ApJ
Recommended from our members
The Repurposing Drugs in Oncology (ReDO) Project
The Repurposing Drugs in Oncology (ReDO) Project seeks to repurpose well-known and well-characterised non-cancer drugs for new uses in oncology. The rationale for this project is presented, examining current issues in oncological drug development, challenges for health systems, and existing and future patient needs. In addition to discussing the advantages of repurposing, the paper also outlines some of the characteristics used in the selection of drug candidates by this project. Challenges in moving candidate drugs into clinical trial and subsequent practice are also discussed
Recommended from our members
Repurposing drugs in oncology (ReDO)—cimetidine as an anti-cancer agent
Cimetidine, the first H2 receptor antagonist in widespread clinical use, has anti-cancer properties that have been elucidated in a broad range of pre-clinical and clinical studies for a number of different cancer types. These data are summarised and discussed in relation to a number of distinct mechanisms of action. Based on the evidence presented, it is proposed that cimetidine would synergise with a range of other drugs, including existing chemotherapeutics, and that further exploration of the potential of cimetidine as an anti-cancer therapeutic is warranted. Furthermore, there is compelling evidence that cimetidine administration during the peri-operative period may provide a survival benefit in some cancers. A number of possible combinations with other drugs are discussed in the supplementary material accompanying this paper
The History of Cosmological Star Formation: Three Independent Approaches and a Critical Test Using the Extragalactic Background Light
Taking three independent approaches, we investigate the simultaneous
constraints set on the cosmic star formation history from various observations,
including stellar mass density and extragalactic background light (EBL). We
compare results based on: 1) direct observations of past light-cone, 2) a model
using local fossil evidence constrained by SDSS observations at z~0 (the
`Fossil' model), and 3) theoretical ab initio models from three calculations of
cosmic star formation history: (a) new (1024)^3 Total Variation Diminishing
(TVD) cosmological hydrodynamic simulation, (b) analytic expression of
Hernquist & Springel based on cosmological Smoothed Particle Hydrodynamics
(SPH) simulations, and (c) semi-analytic model of Cole et al. We find good
agreement among the three independent approaches up to the order of
observational errors, except that all the models predict bolometric EBL of
I_tot ~= 37-52 nW m^-2 sr^-1, which is at the lower edge of the the
observational estimate by Hauser & Dwek. We emphasize that the Fossil model
that consists of two components -- spheroids and disks --, when normalized to
the local observations, provides a surprisingly simple but accurate description
of the cosmic star formation history and other observable quantities. Our
analysis suggests that the consensus global parameters at z=0 are: Omega_* =
0.0023+-0.0004, I_EBL = 43+-7 nW m^-2 sr^-1 rho_SFR=(1.06+-0.22)e-2 Msun yr^-1
Mpc^-3, j_bol = (3.1+-0.2)e8 Lsun Mpc^-3.Comment: 40 page, 10 figures. ApJ in press. Matched to the accepted versio
Recommended from our members
Repurposing Drugs in Oncology (ReDO)—mebendazole as an anti-cancer agent
Mebendazole, a well-known anti-helminthic drug in wide clinical use, has anti-cancer properties that have been elucidated in a broad range of pre-clinical studies across a number of different cancer types. Significantly, there are also two case reports of anti-cancer activity in humans. The data are summarised and discussed in relation to suggested mechanisms of action. Based on the evidence presented, it is proposed that mebendazole would synergise with a range of other drugs, including existing chemotherapeutics, and that further exploration of the potential of mebendazole as an anti-cancer therapeutic is warranted. A number of possible combinations with other drugs are discussed in the Appendix
The Keck+Magellan Survey for Lyman Limit Absorption I: The Frequency Distribution of Super Lyman Limit Systems
We present the results of a survey for super Lyman limit systems (SLLS;
defined to be absorbers with 19.0 <= log(NHI) <= 20.3 cm^-2) from a large
sample of high resolution spectra acquired using the Keck and Magellan
telescopes. Specifically, we present 47 new SLLS from 113 QSO sightlines. We
focus on the neutral hydrogen frequency distribution f(N,X) of the SLLS and its
moments, and compare these results with the Lyman-alpha forest and the damped
Lyman alpha systems (DLA; absorbers with log(NHI) >= 20.3 cm^-2). We find that
that f(N,X) of the SLLS can be reasonably described with a power-law of index
alpha = -1.43^{+0.15}_{-0.16} or alpha = -1.19^{+0.20}_{-0.21} depending on
whether we set the lower N(HI) bound for the analysis at 10^{19.0} cm^-2 or
10^{19.3}$ cm^-2, respectively. The results indicate a flattening in the slope
of f(N,X) between the SLLS and DLA. We find little evidence for redshift
evolution in the shape of f(N,X) for the SLLS over the redshift range of the
sample 1.68 < z < 4.47 and only tentative evidence for evolution in the zeroth
moment of f(N,X), the line density l_lls(X). We introduce the observable
distribution function O(N,X) and its moment, which elucidates comparisons of HI
absorbers from the Lyman-alpha through to the DLA. We find that a simple three
parameter function can fit O(N,X) over the range 17.0 <= log(NHI) <=22.0. We
use these results to predict that f(N,X) must show two additional inflections
below the SLLS regime to match the observed f(N,X) distribution of the
Lyman-alpha forest. Finally, we demonstrate that SLLS contribute a minor
fraction (~15%) of the universe's hydrogen atoms and, therefore, an even small
fraction of the mass in predominantly neutral gas.Comment: 15 pages, 10 figures, accepted to the Astrophysical Journal. Revision
includes updated reference
Optical properties and spatial distribution of MgII absorbers from SDSS image stacking
We present a statistical analysis of the photometric properties and spatial
distribution of more than 2,800 MgII absorbers with 0.37<z<1 and rest
equivalent width W_0(\lambda2796)>0.8\AA detected in SDSS quasar spectra. Using
an improved image stacking technique, we measure the cross-correlation between
MgII gas and light (in the g, r, i and z-bands) from 10 to 200 kpc and infer
the light-weighted impact parameter distribution of MgII absorbers. Such a
quantity is well described by a power-law with an index that strongly depends
on W_0, ranging from ~-1 for W_0~ 1.5\AA. At redshift
0.37<z<0.55, we find the average luminosity enclosed within 100 kpc around MgII
absorbers to be M_g=-20.65+-0.11 mag, which is ~0.5 L_g*. The global
luminosity-weighted colors are typical of present-day intermediate type
galaxies. However, while the light of weaker absorbers originates mostly from
red passive galaxies, stronger systems display the colors of blue star-forming
galaxies. Based on these observations, we argue that the origin of strong MgII
absorber systems might be better explained by models of metal-enriched gas
outflows from star-forming/bursting galaxies. Our analysis does not show any
redshift dependence for both impact parameter and rest-frame colors up to z=1.
However, we do observe a brightening of the absorbers related light at high
redshift (~50% from z~0.4 to 1). We argue that MgII absorbers are a phenomenon
typical of a given evolutionary phase that more massive galaxies experience
earlier than less massive ones, in a downsizing fashion. (abridged)Comment: ApJ in press, 28 pages, 16 figures, using emulateapj. Only typo
corrections wrt the original submission (v1
Probabilistic analysis of the upwind scheme for transport
We provide a probabilistic analysis of the upwind scheme for
multi-dimensional transport equations. We associate a Markov chain with the
numerical scheme and then obtain a backward representation formula of
Kolmogorov type for the numerical solution. We then understand that the error
induced by the scheme is governed by the fluctuations of the Markov chain
around the characteristics of the flow. We show, in various situations, that
the fluctuations are of diffusive type. As a by-product, we prove that the
scheme is of order 1/2 for an initial datum in BV and of order 1/2-a, for all
a>0, for a Lipschitz continuous initial datum. Our analysis provides a new
interpretation of the numerical diffusion phenomenon
Non variability of intervening absorbers observed in the UVES spectra of the "naked-eye" GRB080319
The aim of this paper is to investigate the properties of the intervening
absorbers lying along the line of sight of Gamma-Ray Burst (GRB) 080319B
through the analysis of its optical absorption features. To this purpose, we
analyze a multi-epoch, high resolution spectroscopic observations (R=40000,
corresponding to 7.5 km/s) of the optical afterglow of GRB080319B (z=0.937),
taken with UVES at the VLT. Thanks to the rapid response mode (RRM), we
observed the afterglow just 8m:30s after the GRB onset when the magnitude was R
~ 12. This allowed us to obtain the best signal-to-noise, high resolution
spectrum of a GRB afterglow ever (S/N per resolution element ~ 50). Two further
RRM and target of opportunity observations were obtained starting 1.0 and 2.4
hours after the event, respectively. Four MgII absorption systems lying along
the line of sight to the afterglow have been detected in the redshift range 0.5
< z < 0.8, most of them showing a complex structure featuring several
components. Absorptions due to FeII, MgI and MnII are also present; they appear
in four, two and one intervening absorbers, respectively. One out of four
systems show a MgII2796 rest frame equivalent width larger than 1A. This
confirms the excess of strong MgII absorbers compared to quasars, with dn/dz =
0.9, ~ 4 times larger than the one observed along quasar lines of sight. In
addition, the analysis of multi-epoch, high-resolution spectra allowed us to
exclude a significant variability in the column density of the single
components of each absorber. Combining this result with estimates of the size
of the emitting region, we can reject the hypothesis that the difference
between GRB and QSO MgII absorbers is due to a different size of the emitting
regions.Comment: 10 pages, 15 ps figures, submitted to MNRA
- …