25 research outputs found

    The Horizontal Ice Nucleation Chamber (HINC): INP measurements at conditions relevant for mixed-phase clouds at the High Altitude Research Station Jungfraujoch

    Get PDF
    Abstract. In this work we describe the Horizontal Ice Nucleation Chamber, HINC as a new instrument to measure ambient ice nucleating particle (INP) concentrations for conditions relevant to mixed-phase clouds. Laboratory verification and validation experiments confirm accuracy of the thermodynamic conditions of temperature (T) and relative humidity (RH) in HINC with uncertainties in temperature of ±0.4 K and in RH with respect to water (RHw) of ±1.5 %, which translates to an uncertainty in RH with respect to ice (RHi) of ±3.0 % at T &gt; 235 K. For further validation of HINC as a field instrument, two measurement campaigns were conducted in winters 2015 and 2016 at the High Altitude Research Station Jungfraujoch (JFJ; Switzerland, 3580 m a.s.l.) to sample ambient INPs. During winters 2015 and 2016 the site encountered free tropospheric conditions 92 % and 79 % of the time respectively. We measured INP concentrations at 242 K at water sub-saturated conditions (RHw = 94 %), relevant for the formation of ice clouds, and in the water supersaturated regime (RHw = 103–104 %) to represent ice formation occurring under mixed-phase cloud conditions. In winter 2015 and 2016 the median INP concentrations at RHw = 94 % was below the minimum detectable concentration. At RHw = 104 %, INP concentrations were an order of magnitude higher, with median concentrations in winter 2015 of 2.8 per standard liter (stdL−1; normalized to standard temperature T = 273 K and pressure p = 1013 hPa) and 4.7 stdL−1 in winter 2016. The measurements are in agreement with previous winter measurements obtained with the Portable Ice Nucleation Chamber, PINC, of 2.2 stdL−1 at the same location. During winter 2015, two events caused the INP concentrations at RHw = 103–104 % to significantly increase above the campaign average. First, an increase to 72.1 stdL−1 was measured during an event influenced by marine air, coming from the Northern Sea and the Norwegian Sea. Second, INP concentrations up to 146.2 stdL−1 were observed during a Saharan dust event. To our knowledge this is the first time that a clear enrichment in ambient INP concentration is observed during a time of marine air mass influence, indicating the importance of marine particles on ice nucleation in the free troposphere. </jats:p

    Background Free‐Tropospheric Ice Nucleating Particle Concentrations at Mixed‐Phase Cloud Conditions

    Get PDF
    Clouds containing ice are vital for precipitation formation and are important in determining the Earths radiative budget. However primary formation of ice in clouds is not fully understood. In the presence of ice nucleating particles (INPs), the phase change to ice is promoted, but identification and quantification of INPs in a natural environment remains challenging because of their low numbers. In this paper we quantify INP number concentrations in the free troposphere (FT) as measured at the High Altitude Research Station Jungfraujoch during the years 2014 to 2017. INPs were measured at conditions relevant for mixed-phase cloud formation at 241 to 242 K

    MOSAiC-ACA and AFLUX - Arctic airborne campaigns characterizing the exit area of MOSAiC

    Get PDF
    Two airborne field campaigns focusing on observations of Arctic mixed-phase clouds and boundary layer processes and their role with respect to Arctic amplification have been carried out in spring 2019 and late summer 2020 over the Fram Strait northwest of Svalbard. The latter campaign was closely connected to the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition. Comprehensive data sets of the cloudy Arctic atmosphere have been collected by operating remote sensing instruments, insitu probes, instruments for the measurement of turbulent fluxes of energy and momentum, and dropsondes on board the AWI research aircraft Polar 5. In total, 24 flights with 111 flight hours have been performed over open ocean, the marginal sea ice zone, and sea ice. The data sets follow documented methods and quality assurance and are suited for studies on Arctic mixed-phase clouds and their transformation processes, for studies with a focus on Arctic boundary layer processes, and for satellite validation application

    Cleaner burning aviation fuels can reduce contrail cloudiness

    Get PDF
    Contrail cirrus account for the major share of aviation’s climate impact. Yet, the links between jet fuel composition, contrail microphysics and climate impact remain unresolved. Here we present unique observations from two DLR-NASA aircraft campaigns that measured exhaust and contrail characteristics of an Airbus A320 burning either standard jet fuels or low aromatic sustainable aviation fuel blends. Our results show that soot particles can regulate the number of contrail cirrus ice crystals for current emission levels. We provide experimental evidence that burning low aromatic sustainable aviation fuel can result in a 50 to 70% reduction in soot and ice number concentrations and an increase in ice crystal size. Reduced contrail ice numbers cause less energy deposition in the atmosphere and less warming. Meaningful reductions in aviation’s climate impact could therefore be obtained from the widespread adoptation of low aromatic fuels, and from regulations to lower the maximum aromatic fuel content

    Heterogeneous ice nucleation on dust particles sourced from nine deserts worldwide - Part 2: Deposition nucleation and condensation freezing

    No full text
    Mineral dust particles from deserts are amongst the most common ice nucleating particles in the atmosphere. The mineralogy of desert dust differs depending on the source region and can further fractionate during the dust emission processes. Mineralogy to a large extent explains the ice nucleation behavior of desert aerosol, but not entirely. Apart from pure mineral dust, desert aerosol particles often exhibit a coating or are mixed with small amounts of biological material. Aging on the ground or during atmospheric transport can deactivate nucleation sites, thus strong ice nucleating minerals may not exhibit their full potential. In the partner paper of this work, it was shown that mineralogy determines most but not all of the ice nucleation behavior in the immersion mode found for desert dust. In this study, the influence of semi-volatile organic compounds and the presence of crystal water on the ice nucleation behavior of desert aerosol is investigated. This work focuses on the deposition and condensation ice nucleation modes at temperatures between 238 and 242 K of 18 dust samples sourced from nine deserts worldwide. Chemical imaging of the particles' surface is used to determine the cause of the observed differences in ice nucleation. It is found that, while the ice nucleation ability of the majority of the dust samples is dominated by their quartz and feldspar content, in one carbonaceous sample it is mostly caused by organic matter, potentially cellulose and/or proteins. In contrast, the ice nucleation ability of an airborne Saharan sample is found to be diminished, likely by semi-volatile species covering ice nucleation active sites of the minerals. This study shows that in addition to mineralogy, other factors such as organics and crystal water content can alter the ice nucleation behavior of desert aerosol during atmospheric transport in various ways.ISSN:1680-7375ISSN:1680-736
    corecore