1,236 research outputs found

    The Carbon content in the Galactic CygnusX/DR21 star forming region

    Full text link
    Observations of Carbon bearing species are among the most important diagnostic probes of ongoing star formation. CO is a surrogate for H2_2 and is found in the vicinity of star formation sites. There, [CI] emission is thought to outline the dense molecular cores and extend into the lower density regions, where the impinging interstellar UV radiation field plays a critical role for the dissociation and ionization processes. Emission of ionized carbon ([CII]) is found to be even more extended than [CI] and is linking up with the ionized medium. These different tracers emphasize the importance of multi-wavelength studies to draw a coherent picture of the processes driving and driven by high mass star formation. Until now, large scale surveys were only done with low resolution, such as the COBE full sky survey, or were biased to a few selected bright sources (e.g. Yamamoto et al. 2001, Schneider et al. 2003). A broader basis of unbiased, high-resolution observations of [CI], CO, and [CII] may play a key role to probe the material processed by UV radiation.Comment: 4 pages, 4 figure, to appear in "Proceedings of the 4th Cologne-Bonn-Zermatt-Symposium", ed. S. Pfalzner, C. Kramer, C. Straubmeier, and A. Heithausen (Springer Verlag

    Kinetic energy change with doping upon superfluid condensation in high temperature superconductors

    Full text link
    In conventional BCS superconductors, the electronic kinetic energy increases upon superfluid condensation (the change DEkin is positive). Here we show that in the high critical temperature superconductor Bi-2212, DEkin crosses over from a fully compatible conventional BCS behavior (DEkin>0) to an unconventional behavior (DEkin<0) as the free carrier density decreases. If a single mechanism is responsible for superconductivity across the whole phase diagram of high critical temperature superconductors, this mechanism should allow for a smooth transition between such two regimes around optimal doping.Comment: 3 pages, 2 figure

    Multiple protostellar systems. II. A high resolution near-infrared imaging survey in nearby star-forming regions

    Full text link
    (abridged) Our project endeavors to obtain a robust view of multiplicity among embedded Class I and Flat Spectrum protostars in a wide array of nearby molecular clouds to disentangle ``universal'' from cloud-dependent processes. We have used near-infrared adaptive optics observations at the VLT through the H, Ks and L' filters to search for tight companions to 45 Class I and Flat Spectrum protostars located in 4 different molecular clouds (Taurus-Auriga, Ophiuchus, Serpens and L1641 in Orion). We complemented these observations with published high-resolution surveys of 13 additional objects in Taurus and Ophiuchus. We found multiplicity rates of 32+/-6% and 47+/-8% over the 45-1400 AU and 14-1400 AU separation ranges, respectively. These rates are in excellent agreement with those previously found among T Tauri stars in Taurus and Ophiuchus, and represent an excess of a factor ~1.7 over the multiplicity rate of solar-type field stars. We found no non-hierarchical triple systems, nor any quadruple or higher-order systems. No significant cloud-to-cloud difference has been found, except for the fact that all companions to low-mass Orion protostars are found within 100 AU of their primaries whereas companions found in other clouds span the whole range probed here. Based on this survey, we conclude that core fragmentation always yields a high initial multiplicity rate, even in giant molecular clouds such as the Orion cloud or in clustered stellar populations as in Serpens, in contrast with predictions of numerical simulations. The lower multiplicity rate observed in clustered Class II and Class III populations can be accounted for by a universal set of properties for young systems and subsequent ejections through close encounters with unrelated cluster members.Comment: 15 pages, 6 figures, accepted for publication in Astronomy & Astrophysic

    Infrared Photometry of Starless Dense Cores

    Full text link
    Deep JHKs photometry was obtained towards eight dense molecular cores and J-H vs. H-Ks color-color plots are presented. Our photometry, sensitive to the detection of a 1 solar mass, 1 X 10^6 year old star through approx. 35 - 50 magnitudes of visual extinction, shows no indication of the presence of star/disk systems based on J-H vs. H-Ks colors of detected objects. The stars detected towards the cores are generally spatially anti-correlated with core centers suggesting a background origin, although we cannot preclude the possibility that some stars detected at H and Ks alone, or Ks alone, are not low mass stars or brown dwarfs (< 0.3 Solar Masses) behind substantial amounts of visual extinction (e.g. 53 magnitudes for L183B). Lower limits to optical extinctions are estimated for the detected background stars, with high extinctions being encountered, in the extreme case ranging up to at least Av = 46, and probably higher. The extinction data are used to estimate cloud masses and densities which are comparable to those determined from molecular line studies. Variations in cloud extinctions are consistent with a systematic nature to cloud density distributions and column density variations and extinctions are found to be consistent with submillimeter wave continuum studies of similar regions. The results suggest that some cores have achieved significant column density contrasts (approx. 30) on sub-core scales (approx. 0.05 pc) without having formed known stars.Comment: 44 pages including tables and figures, accepted ApJ, March 24, 200

    First results from the CALYPSO IRAM-PdBI survey. I. Kinematics of the inner envelope of NGC1333-IRAS2A

    Full text link
    The structure and kinematics of Class 0 protostars on scales of a few hundred AU is poorly known. Recent observations have revealed the presence of Keplerian disks with a diameter of 150-180 AU in L1527-IRS and VLA1623A, but it is not clear if such disks are common in Class 0 protostars. Here we present high-angular-resolution observations of two methanol lines in NGC1333-IRAS2A. We argue that these lines probe the inner envelope, and we use them to study the kinematics of this region. Our observations suggest the presence of a marginal velocity gradient normal to the direction of the outflow. However, the position velocity diagrams along the gradient direction appear inconsistent with a Keplerian disk. Instead, we suggest that the emission originates from the infalling and perhaps slowly rotating envelope, around a central protostar of 0.1-0.2 M_\odot. If a disk is present, it is smaller than the disk of L1527-IRS, perhaps suggesting that NGC1333-IRAS2A is younger.Comment: Accepted for publication in A&A letter

    Infall models of Class 0 protostars

    Full text link
    We have carried out radiative transfer calculations of infalling, dusty envelopes surrounding embedded protostars to understand the observed properties of the recently identified ``Class 0'' sources. To match the far-infrared peaks in the spectral energy distributions of objects such as the prototype Class 0 source VLA 1623, pure collapse models require mass infall rates \sim10^{-4}\msunyr1^{-1}. The radial intensity distributions predicted by such infall models are inconsistent with observations of VLA 1623 at sub-mm wavelengths, in agreement with the results of Andre et al. (1993) who found a density profile of ρr1/2\rho \propto r^{-1/2} rather than the expected ρr3/2\rho \propto r^{-3/2} gradient. To resolve this conflict, while still invoking infall to produce the outflow source at the center of VLA 1623, we suggest that the observed sub-mm intensity distribution is the sum of two components: an inner infall zone, plus an outer, more nearly constant-density region. This explanation of the observations requires that roughly half the total mass observed within 2000 AU radius of the source lies in a region external to the infall zone. The column densities for this external region are comparable to those found in the larger Oph A cloud within which VLA 1623 is embedded. The extreme environments of Class 0 sources lead us to suggest an alternative or additional interpretation of these objects: rather than simply concluding with Andre et al. that Class 0 objects only represent the earliest phases of protostellar collapse, and ultimately evolve into older ``Class I'' protostars, we suggest that many Class 0 sources could be the protostars of very dense regions. (Shortened)Comment: 22 pages, including 3 PostScript figures, accepted for publication in The Astrophysical Journa

    Spectroscopic Detection of a Stellar-like Photosphere in an Accreting Protostar

    Get PDF
    We present the first spectrum of a highly veiled, strongly accreting protostar which shows photospheric absorption features and demonstrates the stellar nature of its central core. We find the spectrum of the luminous (L_bol = 10 L_sun) protostellar source, YLW 15, to be stellar-like with numerous atomic and molecular absorption features, indicative of a K5 IV/V spectral type and a continuum veiling r_k = 3.0. Its derived stellar luminosity (3 L_sun) and stellar radius (3.1 R_sun) are consistent with those of a 0.5 M_sun pre-main-sequence star. However, 70% of its bolometric luminosity is due to mass accretion, whose rate we estimate to be 1.6 E-6 M_sun / yr onto the protostellar core. We determine that excess infrared emission produced by the circumstellar accretion disk, the inner infalling envelope, and accretion shocks at the surface of the stellar core of YLW 15 all contribute signifi- cantly to its near-IR continuum veiling. Its projected rotation velocity v sin i = 50 km / s is comparable to those of flat-spectrum protostars but considerably higher than those of classical T Tauri stars in the rho Oph cloud. The protostar may be magnetically coupled to its circumstellar disk at a radius of 2 R_*. It is also plausible that this protostar can shed over half its angular momentum and evolve into a more slowly rotating classical T Tauri star by remaining coupled to its circumstellar disk (at increasing radius) as its accretion rate drops by an order of magnitude during the rapid transition between the Class I and Class II phases of evolution. The spectrum of WL 6 does not show any photospheric absorption features, and we estimate that its continuum veiling is r_k >= 4.6. Together with its low bolometric luminosity (2 L_sun), this dictates that its central core is very low mass, ~0.1 M_sun.Comment: 14 pages including 9 figures (3 figures of 3 panels each, all as separate files). AASTeX LaTex macros version 5.0. To be published in The Astronomical Journal (tentatively Oct 2002

    Molecular Tracers of Embedded Star Formation in Ophiuchus

    Full text link
    In this paper we analyze nine SCUBA cores in Ophiuchus using the second-lowest rotational transitions of four molecular species (12CO, 13CO, C18O, and C17O) to search for clues to the evolutionary state and star-formation activity within each core. Specifically, we look for evidence of outflows, infall, and CO depletion. The line wings in the CO spectra are used to detect outflows, spectral asymmetries in 13CO are used to determine infall characteristics, and a comparison of the dust emission (from SCUBA observations) and gas emission (from C18O) is used to determine the fractional CO freeze-out. Through comparison with Spitzer observations of protostellar sources in Ophiuchus, we discuss the usefulness of CO and its isotopologues as the sole indicators of the evolutionary state of each core. This study is an important pilot project for the JCMT Legacy Survey of the Gould Belt (GBS) and the Galactic Plane (JPS), which intend to complement the SCUBA-2 dust continuum observations with HARP observations of 12CO, 13CO, C18O, and C17O J = 3 - 2 in order to determine whether or not the cold dust clumps detected by SCUBA-2 are protostellar or starless objects. Our classification of the evolutionary state of the cores (based on molecular line maps and SCUBA observations) is in agreement with the Spitzer designation for six or seven of the nine SCUBA cores. However, several important caveats exist in the interpretation of these results, many of which large mapping surveys like the GBS may be able to overcome to provide a clearer picture of activity in crowded fields.Comment: 43 pages including 19 postscript figures. Accepted for publication in the PAS

    First results from the CALYPSO IRAM-PdBI survey - III. Monopolar jets driven by a proto-binary system in NGC1333-IRAS2A

    Get PDF
    Context: The earliest evolutionary stages of low-mass protostars are characterised by hot and fast jets which remove angular momentum from the circumstellar disk, thus allowing mass accretion onto the central object. However, the launch mechanism is still being debated. Aims: We would like to exploit high-angular (~ 0.8") resolution and high-sensitivity images to investigate the origin of protostellar jets using typical molecular tracers of shocked regions, such as SiO and SO. Methods: We mapped the inner 22" of the NGC1333-IRAS2A protostar in SiO(5-4), SO(65-54), and the continuum emission at 1.4 mm using the IRAM Plateau de Bure interferometer in the framework of the CALYPSO IRAM large program. Results: For the first time, we disentangle the NGC1333-IRAS2A Class 0 object into a proto-binary system revealing two protostars (MM1, MM2) separated by ~ 560 AU, each of them driving their own jet, while past work considered a single protostar with a quadrupolar outflow. We reveal (i) a clumpy, fast (up to |V-VLSR| > 50 km/s), and blueshifted jet emerging from the brightest MM1 source, and (ii) a slower redshifted jet, driven by MM2. Silicon monoxide emission is a powerful tracer of high-excitation (Tkin > 100 K; n(H2) > 10^5 cm-3) jets close to the launching region. At the highest velocities, SO appears to mimic SiO tracing the jets, whereas at velocities close to the systemic one, SO is dominated by extended emission, tracing the cavity opened by the jet. Conclusions: Both jets are intrinsically monopolar, and intermittent in time. The dynamical time of the SiO clumps is < 30-90 yr, indicating that one-sided ejections from protostars can take place on these timescales.Comment: Astronomy & Astrophysics Letter, in pres
    corecore