30 research outputs found

    Flowering Date of Taxonomic Families Predicts Phenological Sensitivity to Temperature: Implications for Forecasting the Effects of Climate Change on Unstudied Taxa

    Get PDF
    Premise of the study: Numerous long-term studies in seasonal habitats have tracked interannual variation in fi rst fl owering date (FFD) in relation to climate, documenting the effect of warming on the FFD of many species. Despite these efforts, long-term phenological observations are still lacking for many species. If we could forecast responses based on taxonomic affi nity, however, then we could leverage existing data to predict the climate-related phenological shifts of many taxa not yet studied; Methods: We examined phenological time series of 1226 species occurrences (1031 unique species in 119 families) across seven sites in North America and England to determine whether family membership (or family mean FFD) predicts the sensitivity of FFD to standardized interannual changes in temperature and precipitation during seasonal periods before fl owering and whether families differ signifi cantly in the direction of their phenological shifts; Key results: Patterns observed among species within and across sites are mirrored among family means across sites; earlyfl owering families advance their FFD in response to warming more than late-fl owering families. By contrast, we found no consistent relationships among taxa between mean FFD and sensitivity to precipitation as measured here; Conclusions: Family membership can be used to identify taxa of high and low sensitivity to temperature within the seasonal, temperate zone plant communities analyzed here. The high sensitivity of early-fl owering families (and the absence of earlyfl owering families not sensitive to temperature) may refl ect plasticity in fl owering time, which may be adaptive in environments where early-season conditions are highly variable among years

    Adaptation and Constraint in the Plant Reproductive Phase

    No full text
    Conservatism is a central theme of organismic evolution. Related species share characteristics due to their common ancestry. Some concern have been raised among evolutionary biologists, whether such conservatism is an expression of natural selection or of a constrained ability to adapt. This thesis explores adaptations and constraints within the plant reproductive phase, particularly in relation to the evolution of fleshy fruit types (berries, drupes, etc.) and the seasonal timing of flowering and fruiting. The different studies were arranged along a hierarchy of scale, with general data sets sampled among seed plants at the global scale, through more specific analyses of character evolution within the genus Rhamnus s.l. L. (Rhamnaceae), to descriptive and experimental field studies in a local population of Frangula alnus (Rhamnaceae). Apart from the field study, this thesis is mainly based on comparative methods explicitly incorporating phylogenetic relationships. The comparative study of Rhamnus s.l. species included the reconstruction of phylogenetic hypotheses based on DNA sequences. Among geographically overlapping sister clades, biotic pollination was not correlated with higher species richness when compared to wind pollinated plants. Among woody plants, clades characterized by fleshy fruit types were more species rich than their dry-fruited sister clades, suggesting that the fleshy fruit is a key innovation in woody habitats. Moreover, evolution of fleshy fruits was correlated with a change to more closed (darker) habitats. An independent contrast study within Rhamnus s.l. documented allometric relations between plant and fruit size. As a phylogenetic constraint, allometric effects must be considered weak or non-existent, though, as they did not prevail among different subclades within Rhamnus s.l. Fruit size was correlated with seed size and seed number in F. alnus. This thesis suggests that frugivore selection on fleshy fruit may be important by constraining the upper limits of fruit size, when a plant lineage is colonizing (darker) habitats where larger seed size is adaptive. Phenological correlations with fruit set, dispersal, and seed size in F. alnus, suggested that the evolution of reproductive phenology is constrained by trade-offs and partial interdependences between flowering, fruiting, dispersal, and recruitment phases. Phylogenetic constraints on the evolution of phenology were indicated by a lack of correlation between flowering time and seasonal length within Rhamnus cathartica and F. alnus, respectively. On the other hand, flowering time was correlated with seasonal length among Rhamnus s.l. species. Phenological differences between biotically and wind pollinated angiosperms also suggested adaptive change in reproductive phenology.Äpplet faller inte lĂ„ngt frĂ„n trĂ€det. Men varför? Den biologiska mĂ„ngfalden prĂ€glas i stor utstrĂ€ckning av fylogenetiskt bevarade karaktĂ€rsdrag; nĂ€rbeslĂ€ktade arter Ă€r lika. Det pĂ„gĂ„r en diskussion bland evolutionsbiologer om i vilken utstrĂ€ckning denna konservatism Ă€r ett resultat av naturlig selektion eller av en begrĂ€nsad anpassningsförmĂ„ga. Denna avhandling diskuterar begreppet evolutionĂ€ra begrĂ€nsningar i relation till den reproduktiva fasen hos vĂ€xter. I fokus ligger sĂ€rskilt evolutionen av bĂ€rliknande (endozoochora) frukter respektive evolutionen av sĂ€songsmĂ€ssiga mönster (fenologi) för blomning och fruktsĂ€ttning. Avhandlingen Ă€r hierarkiskt organiserad sĂ„ att olika delstudier gjordes pĂ„ olika skalnivĂ„er: fenologi- och fruktevolution analyserades för frövĂ€xter respektive gömfröiga vĂ€xter; inom brakvedsslĂ€ktena Rhamnus och Frangula (Rhamnaceae); samt för en lokal population av brakved (Frangula alnus). Populationsstudien baserades pĂ„ sĂ„vĂ€l experimentella som deskriptiva data, medan övriga studier i huvudsak genomfördes med fylogenetisk komparativ metodik baserade pĂ„ litteraturdata. Som en del av de komparativa studierna rekonstruerades fylogenetiska hypoteser för Rhamnus s.l. utifrĂ„n DNA-sekvenser (ITS, trnL-F), vilka gav stöd för att Frangula och Rhamnus Ă€r monofyletiska systerslĂ€kten. I en biogeografiskt kontrollerad fylogenetisk kontrastanalys upptĂ€cktes inga skillnader i artrikedom mellan djur- och vindpollinerade vĂ€xter. BĂ€rliknande frukter verkar dock vara en betydelsefull karaktĂ€r (key innovation) i skogsmiljöer. För det första var fylogenetiska klader med bĂ€rliknande frukter mer artrika Ă€n systerklader med torra frukter. Dessutom var uppkomster av bĂ€rliknande frukt korrelerad till habitat med mer sluten vegetation. En fylogenetisk kontrastanalys av allometriska effekter visade pĂ„ en positiv korrelation mellan vĂ€xtindividens och fruktens storlek inom Rhamnus s.l. Upprepade analyser av dessa allometriska samband i olika monofyletiska subklader inom Rhamnus s.l. indikerar dock att allometri, sĂ„som evolutionĂ€r begrĂ€nsning, Ă€r svag. I populationsstudien av F. alnus var fruktstorlek positivt korrelerad till sĂ„vĂ€l fröantal som frövikt. En generell hypotes utifrĂ„n denna avhandling blir dĂ€rför att frugivorer (de djur som Ă€ter bĂ€ren och dĂ€rmed sprider vĂ€xtens frön) utövar ett starkt selektionstryck pĂ„ vĂ€xter som koloniserar ett habitat dĂ€r fröstorlek Ă€r adaptivt, eftersom fruktstorlek pĂ„verkar frugivorernas (ssk. fĂ„glars) sĂ€tt att hantera frukten. Reproduktiv fenologi var korrelerad till fruktsĂ€ttning, fröspridning och fröstorlek hos F. alnus. Detta stödjer tanken att evolutionen av blomnings- och fruktsĂ€ttningstider begrĂ€nsas av avvĂ€gningar (trade-offs) och partiella beroenden mellan blomning-, fruktsĂ€ttnings-, spridnings och rekryteringsfaserna. Inomartsvariation i blomningstid för F. alnus respektive getapel (Rhamnus cathartica) över en nordeuropeisk latitudinell transekt var inte korrelerad till sĂ€songslĂ€ngd, vilket antyder att utvecklingen av blomningstider Ă€r evolutionĂ€rt begrĂ€nsad. Å andra sidan pĂ„visades en sĂ„dan korrelation mellan blomningstid och sĂ€songslĂ€ngd i en mellanartsstudie inom Rhamnus s.l. Den fylogenetiska kontrastanalysen mellan djur- och vindpollinerade vĂ€xter visade ocksĂ„ pĂ„ adaptiva skillnader i fenologi. Blomningstiderna inom en klad med biotiskt pollinerade arter var mer Ă„tskilda Ă€n inom den vindpollinerade systerkladen, och den vĂ€lkĂ€nda iakttagelsen att vindpollinerade trĂ€d blommor tidigare pĂ„ sĂ€songen fick Ă€ven stöd i ett fylogenetiskt komparativt perspektiv

    Is timing of reproduction according to temperature sums an optimal strategy?

    No full text
    Temperature sums are widely used to predict the seasonal timing of yearly recurring biological events, such as flowering, budburst, and hatching. We use a classic energy allocation model for annual plants to compare a strategy for reproductive timing that follows a temperature sum rule (TSR) with a strategy that follows an optimal control rule (OCR) maximizing reproductive output. We show that the OCR corresponds to a certain TSR regardless of how temperature is distributed over the growing season as long as the total temperature sum over the whole growing season is constant between years. We discuss such scenarios, thus outlining under which type of variable growth conditions TSR maximizes reproductive output and should be favored by natural selection. By providing an ultimate explanation for a well-documented empirical pattern this finding enhances the credibility of temperature sums as predictors of the timing of biological events. However, TSR and OCR respond in opposite directions when the total yearly temperature sum changes between years, representing, for example, variation in the length of the growing season. Our findings have implications for predicting optimal responses of organisms to climatic changes and suggest under which conditions natural selection should favor photoperiod versus temperature control

    Naturens kalender : Förslag till ny miljöövervakning och nya miljömÄlsindikatorer

    No full text
    ”Naturens kalender” Ă€r ett projekt som syftar till att följa hur klimatförĂ€ndringen pĂ„verkar grundlĂ€ggande ekosystemegenskaper och ekosystemtjĂ€nster. Genom att bygga upp ett regionalt nĂ€tverk av frivilliga fenologivĂ€ktare, som gör observationer av utvalda vĂ€xtarter lövsprickning, blomning, fruktmognad och höstlöv, kan förĂ€ndringar i naturen följas pĂ„ regional skala, förĂ€ndringar som i första hand kan hĂ€rledas till ett allt varmare klimat. Projektet Ă€r en fortsĂ€ttning av ett projekt som ursprungligen startades i Jönköpings lĂ€n 2009. Redan i urspungsprojektet fanns tankar kring hur verksamheten skulle kunna vĂ€xa vidare. Ett viktigt steg var dĂ„ att skapa en miljömĂ„lsindikator för miljömĂ„len ”BegrĂ€nsad klimatpĂ„verkan”, ”Ett rikt vĂ€xt- och djurliv” och ”Frisk luft”. För att kunna fĂ„ regional upplösning av miljömĂ„lsindikatorerna krĂ€vs regionala nĂ€tverk av fenologivĂ€ktare. Projektet har tagit fram förslag pĂ„ hur dessa kan byggas upp och integreras i miljöövervakning. Totalt sett behöver en lĂ€nskoordinator ca 80 arbetstimmar för att bygga upp verksamheten och 40 timmar för att driva den Ă„rligen. I förslaget ingĂ„r ocksĂ„ en Ă„rlig kostnad om ca 40 arbetstimmar för den nationella koordinatorn, för att denna ska kunna bistĂ„ i det regionala rekryterings- och utvecklingsarbetet. De befintliga regionala nĂ€tverken Ă€r baserade pĂ„ samverkan mellan enstaka professionella observatörer (sĂ„ som naturum, forskningsstationer eller botaniska trĂ€dgĂ„rdar) och en större grupp frivilliga sĂ„ kallade fenologivĂ€ktare. Frivilliginsatserna ger fördelar i och med ett större engagemang för Ă€mnet och en större geografisk spridning av inrapporterade data Ă€n vad som hade varit möjligt om enbart professionella stationer anvĂ€nds. Nackdelen med ett frivilligbaserat nĂ€tverk Ă€r osĂ€kerheten kring hur lĂ„ngsiktig verksamheten kan bli. En förutsĂ€ttning för frivilligbaserade system Ă€r en aktiv rekryteringsverksamhet och effektiv Ă„terkoppling, samt att den statistiska analysen av insamlade data utgĂ„r frĂ„n osĂ€kerhetsfaktorerna. NaturvĂ„rdsverket har uttalat sitt stöd för uppbyggnaden av detta system dĂ€r frivilliga och professionella samverkar, och lĂ€mnat Ă„terkommande bidrag till utveckling- och rekryteringsverksamheten. SLU:s fortlöpande miljöanalys har Ă„ sin sida finansierat den nationella samordnaren sedan 2010 och uttryckt en lĂ„ngsiktig ambition att fortsĂ€tta med detta. En lĂ€nskoordinator, som samverkar med den nationella samordnaren, Ă€r viktig för att upprĂ€tthĂ„lla nĂ€tverken Ă€ven pĂ„ sikt. LĂ€nskoordinatorn har möjlighet att hĂ„lla god personlig kontakt med de frivilliga och ordna möten som inspirerar dem att fortsĂ€tta över lĂ€ngre perioder. Att fenologidata kommer att ligga till grund för en miljömĂ„lsindikator Ă€r i sig en motiverande faktor som borgar för en lĂ„ngsiktighet i verksamheten frĂ„n statligt hĂ„ll och som bidrar till de frivilligas motivation. NĂ€r det nationella nĂ€tverket, kompletterat med de förtĂ€tade regionala, finns pĂ„ plats finns möjlighet att gĂ„ vidare med arbetet att ta fram miljömĂ„lsindikatorer baserat pĂ„ fenologiverksamheten. I projektet har vi tagit fram förslag pĂ„ sammanlagt sju olika indikatorer till de ovan nĂ€mnda miljömĂ„len. Indikatorerna baseras pĂ„ arter med en stor biologisk eller symbolisk betydelse och har valts för att de förekommer i större delen av landet och Ă€r utspridda över vegetationsperioden. Data föreslĂ„s att hĂ€mtas dels frĂ„n Svenska fenologinĂ€tverket, dels frĂ„n Pollenlaboratorierna. Projektet Ă€r ett samarbetsprojekt mellan lĂ€nsstyrelserna i Jönköping, SkĂ„ne, Örebro och VĂ€sterbottens lĂ€n, samt Svenska fenologinĂ€tverket. Svenska fenologinĂ€tverket (SWE-NPN) Ă€r ett samarbete mellan universitet (GU, LU, SLU, SU), myndigheter (NV, SMHI, Lst), musĂ©er (NRM) och frivilliga. Sveriges lantbruksuniversitet Ă€r huvudman för (SWE-NPN)

    Naturens kalender - fenologiska observationer av medborgarforskare: VĂ„rkollen

    No full text
    Nature's Calendar (www.naturenskalender.se, in Swedish only) is run by the Swedish National Phenology Network, a consortium of Swedish universities, governmental agencies and NGO:s. The Swedish University of Agricultural Sciences hosts the network. The main task for the Nature's calendar is to collect observations of different spring and autumn signs appearing during the vegetation season. Data about the nature's calendar is collected in two ways, the long-term environmental monitoring through "Calendars", where phenological observations are reported all through the year, and through "Checks", where phenology observations are reported during short-time campaigns, giving a snapshot of the phenological status at a certain time of the year. Calendars The long-term environmental monitoring is performed by citizen scientists and professional observers at research stations and like. Three calendars have been launched in the Nature's Calendar; the Plant's Calendar (from 2008), the Bird's Calendar (from 2016) and the Beekeeper's Calendar (between 2015 and 2018). Checks Starting in 2015, a campaign called "VĂ„rkollen" (i.e. "Spring Check") has been run during two (April 30 - May 1) or three (April 29 - May 1) days every year. The campaign, where the phenology of only 6 species (also available in the historical phenology dataset) gives a snapshot of how spring has proceeded all over the country at this time. Aims Phenological changes in nature gives the most obvious signs of the biological effect of climate change. Spring signs, autumn signs, the start, end and length of the growing season, and many other signs in nature are basic properties of ecosystems. Also, the interaction between different organisms, e.g. flowering plants and pollinators, are affected if the nature's calendar changes. Observations reported to the Nature's Calendar can be compared to similar observations collected for more than 100 years ago (see Swedish Historical Phenology Dataset, published in another place at this platform), to detect evidence of phenological shifts over time that can be connected to climate change. The aim of the Nature's Calendar is to collect phenological data from the first spring sign to the last autumn sign, to be able to offer nation-wide data to everyone interested, to facilitate research, environmental assessments, the evaluation of environmental goals, etc, to be better prepared to meet the effects of climate change. For example, the data collected in Nature's Calendar is continuously used to evaluate the Swedish environmental objective Reduced Climate through the indicator called ”Growing Season” (www.slu.se/vaxternasvaxtsasong). Three datasets are made available in this publication: the Plant's Calendar, the Beekeeper's Calendar and the Spring Check datasets. They all originate from the same database in the Nature's Calendar, while the Bird's Calendar observations are published through the Swedish Species Observation System Portal (www.artportalen.se). In the Spring Check, Citizen Scientist's have reported observations of how far the development of - flowering of Liverleaf, Colt's-foot, Wood Anemone, Goat Willow and Bird Cherry - budburst of birch have progressed until Valpurgis Day (some years between April 29 and May 1, some years between April 30 and May 1). The aim with the data collection is to obtain nationwide data that can provide information to understand, track changes and predict effects of climate change on natural plants in Sweden by studying the progress of some species all over the country at one and the same date every year, and compare the current progress with what have been seen in historical records of the same plants. The dataset includes one file with observation data (spring_check_2015-2021.csv), one PDF file (metadata_spring_check_2015-2021.pdf) with metadata that describes how the included parameters should be interpreted and lists of included species and phases, and one PDF file (Varkollen_folder_2022.pdf) which is the instruction given to the observers (in Swedish, only). The observation data file includes totally 54 305 observations. Coordinates of the observation locations have been made diffuse, to make it impossible to trace back the observations to the observer (coordinates are rounded to 3 decimals).Naturens kalender (www.naturenskalender.se) drivs av Svenska fenologinĂ€tverket, som Ă€r ett nĂ€tverk med flera universitet, myndigheter och föreningar. SLU, Sveriges lantbruksuniversitet, Ă€r nĂ€tverkets huvudman. Huvuduppgiften för Naturens kalender Ă€r att samla in observationer av vĂ„rtecken, hösttecken och annat i naturens kalender. Data om naturens kalender samlas in pĂ„ tvĂ„ olika sĂ€tt. Dels bedrivs en lĂ„ngsiktig miljöövervakning i form av ”kalendrar” dĂ€r rapporter om fenologiska observationer samlas in över hela Ă„ret, dels genomför vi korta ”kollar” dĂ€r vi tar en ögonblicksbild av naturens kalender i landet vid en viss tidpunkt pĂ„ Ă„ret. Kalendrar Den lĂ„ngsiktiga miljöövervakningen genomförs av frivilliga och professionella medborgarforskare, s.k. fenologivĂ€ktare, i VĂ€xtkalendern (frĂ„n 2008) och FĂ„gelkalendern (frĂ„n 2016). Under Ă„ren 2015-2018 fanns ocksĂ„ Bikalendern, som förutom att samla in observationer av vĂ€xters fenologi, ocksĂ„ registrerade aktiviteter som biodlare utförde pĂ„ bigĂ„rden som beskriver binas aktiviteter och skötsel. Kollar Med början 2015 genomförs VĂ„rkollen under Valborgshelgen, en 2-dagars (30/4-1/5) eller 3-dagars (29/4-1/5) kampanj dĂ€r vi med hjĂ€lp av medborgarforskares observationer frĂ„n hela landet fĂ„r en "ögonblicksbild" av hur lĂ„ngt vĂ„ren kommit vid den tidpunkten. I VĂ„rkollen samlas enbart fenologiska observationer pĂ„ 6 arter, vilka Ă€ven förekommer i det historiska datasetet, in. Motiv och syfte Fenologiska förĂ€ndringar i naturen Ă€r den tydligaste biologiska effekten av en klimatförĂ€ndring. VĂ„rtecken, hösttecken, vĂ€xtsĂ€songens start, slut, lĂ€ngd och andra hĂ€ndelser i naturens kalender Ă€r kopplade till grundlĂ€ggande egenskaper hos ekosystemen. Samspelet mellan olika arter, t.ex. vĂ€xterna och deras pollinatörer, pĂ„verkas ocksĂ„, om naturens kalender Ă€ndras. En förĂ€ndring av naturens kalender fĂ„r ocksĂ„ effekt för landets alla pollenallergiker eftersom bĂ„de tidpunkten och lĂ€ngden pĂ„ pollenperioden Ă€ndras. Observationer som samlas in i Naturens kalender kan jĂ€mföras med motsvarande observationer som gjordes för över 100 Ă„r sedan (se Svenskt historiskt fenologidataset, som publicerats pĂ„ annan plats pĂ„ SND), för att upptĂ€cka fenologiska förĂ€ndringar över tid som kan bero pĂ„ klimatförĂ€ndringar. MĂ„let med Naturens kalender Ă€r att samla in data om allt frĂ„n första vĂ„rtecken till sista hösttecken, sĂ„ att vi kan erbjuda landsomfattande data till alla intresserade, för att underlĂ€tta forskning, miljömĂ„lsarbete och information och göra oss bĂ€ttre rustade att möta klimatförĂ€ndringens effekter. Data frĂ„n Naturens kalender anvĂ€nds exempelvis till uppföljningen av de svenska miljömĂ„len genom miljömĂ„lsindikatorn ”VĂ€xternas vĂ€xtsĂ€song” (www.slu.se/vaxternasvaxtsasong). HĂ€r tillgĂ€ngliggörs tre dataset: VĂ€xtkalendern, Bikalendern och VĂ„rkollen, som alla kommer frĂ„n samma databas i Naturens kalender. FĂ„gelkalenderns data publiceras i Artportalen (www.artportalen.se). I VĂ„rkollen har medborgarforskare rapporterat in observationer av hur lĂ„ngt utvecklingen av - blomning hos tussilago, blĂ„sippa, vitsippa, sĂ€lg och hĂ€gg - lövsprickning hos björk har kommit vid tidpunkten för Valborg (vissa Ă„r 29/4-1/5, andra Ă„r enbart 30/4-1/5). MĂ„let Ă€r att bidra med landsomfattande data för att bĂ€ttre kunna följa, förstĂ„ och förutse klimatförĂ€ndringens effekter pĂ„ vilda vĂ€xter i Sverige genom att studera statusen över hela landet för de ingĂ„ende arterna och faserna vid en och samma tidpunkt och jĂ€mföra dessa med historiska observationsdata för samma arter. Datasetet innehĂ„ller en fil med observationsdata (spring_check_2015-2021.csv), en PDF-fil (metadata_spring_check_2015-2021.pdf) med metadata som beskriver ingĂ„ende variabler och listor pĂ„ ingĂ„ende arter och faser, samt en PDF-fil (varkollen_folder_2022.pdf), som Ă€r den instruktion som de som rapporterar kan lĂ€sa. Observationsdatafilen innehĂ„ller totalt 54 306 observationer. Koordinaterna för observationsplatserna har gjorts diffusa för att ta bort möjligheten att spĂ„ra observatören (avrundning till 3 decimaler)

    Climate change and the optimal flowering time of annual plants in seasonal environments

    No full text
    Long-term phenology monitoring has documented numerous examples of changing flowering dates during the last century. A pivotal question is whether these phenological responses are adaptive or not under directionally changing climatic conditions. We use a classic dynamic growth model for annual plants, based on optimal control theory, to find the fitness-maximizing flowering time, defined as the switching time from vegetative to reproductive growth. In a typical scenario of global warming, with advanced growing season and increased productivity, optimal flowering time advances less than the start of the growing season. Interestingly, increased temporal spread in production over the season may either advance or delay the optimal flowering time depending on overall productivity or season length. We identify situations where large phenological changes are necessary for flowering time to remain optimal. Such changes also indicate changed selection pressures. In other situations, the model predicts advanced phenology on a calendar scale, but no selection for early flowering in relation to the start of the season. We also show that the optimum is more sensitive to increased productivity when productivity is low than when productivity is high. All our results are derived using a general, graphical method to calculate the optimal flowering time applicable for a large range of shapes of the seasonal production curve. The model can thus explain apparent maladaptation in phenological responses in a multitude of scenarios of climate change. We conclude that taking energy allocation trade-offs and appropriate time scales into account is critical when interpreting phenological patterns

    One man, 73 years, and 25 species. Evaluating phenological responses using a lifelong study of first flowering dates.

    No full text
    Phenological shifts linked to global warming reflect the ability of organisms to track changing climatic conditions. However, different organisms track global warming differently and there is an increasing interest in the link between phenological traits and plant abundance and distribution. Long-term data sets are often used to estimate phenological traits to climate change, but so far little has been done to evaluate the quality of these estimates. Here, we use a 73-year long data series of first flowering dates for 25 species from north-temperate Sweden to evaluate (i) correlations between first flowering dates and year for different time periods and (ii) linear regression models between first flowering date and mean monthly temperatures in preceding months. Furthermore, we evaluate the potential of this kind of data to estimate the phenological temperature sensitivities (i.e. number of days phenological change per degree temperature change, ÎČ(60)) in such models. The sign of the correlations between first flowering dates and year were highly inconsistent among different time periods, highlighting that estimates of phenological change are sensitive to the specific time period used. The first flowering dates of all species were correlated with temperature, but with large differences in both the strength of the response and the period(s) of the year that were most strongly associated with phenological variation. Finally, our analyses indicated that legacy data sets need to be relatively long-term to be useful for estimating phenological temperature sensitivities (ÎČ(60)) for inter-specific comparisons. In 10-year long observation series only one out of 24 species reached ≄80 % probability of estimating temperature sensitivity (ÎČ(60)) within a ±1 range, and 17 out of 24 species reached ≄80 % probability when observation series were 20 years or shorter. The standard error for ÎČ(60) ranged from 0.6 to 2.0 for 10-year long observation series, and 19 out of 24 species reached SE < 1 after 15 years. In general, late flowering species will require longer time series than early flowering species

    Performance of tree phenology models along a bioclimatic gradient in Sweden

    No full text
    Tree phenology has been recognized as an important indicator of climate change, and a wide range of budburst models have been developed. The models differ in temperature sensitivity, and the choice of model can therefore influence the result of climate impact assessments. In this study we compared the ability of 15 models to simulate budburst of the main forest tree species in Sweden. Records on the timing of budburst, available for 1873-1918 and 1966-2011, were used for model evaluation. The predefined models, having different chilling, competence and forcing modules, represented different hypothesis on temperature impact on tree phenology. We extracted the model-specific forcing units accumulated by the observed day of budburst, and tested for covariation with bio-climatic gradients. For all tree species, most models indicated a negative relation between forcing requirement and latitude, which may indicate provenance specific adaptations. The thermal continentality index, which in Sweden is highly correlated with latitude, did provide some additional explanation for the period of 1873-1918 but not for the period of 1966-2011. For most model- and tree species combinations, temperature anomalies explain a significant part of the variability in forcing units accumulated at day of budburst. This indicates that the budburst models were not able to fully track the response to inter-annual variations in temperature conditions, probably due to difficulties in capturing species and provenance specific chilling requirement, day length response and impact of spring backlashes. (C) 2013 Elsevier B.V. All rights reserved
    corecore