20 research outputs found

    Étude hydrodynamique et thermique d'un nouveau concept de récepteur solaire à suspensions denses gazparticules

    Get PDF
    Parmi les centrales solaires thermiques à concentration, la technologie des centrales à tour offre l'un des rendements les plus importants de production d'énergie. Néanmoins, l'efficacité et la sécurité de ces centrales sont améliorables. En effet, les sels fondus, généralement utilisés comme fluide de transfert thermique, présentent une plage limitée d'utilisation (200-550°C), à l'origine des limites d'efficacité de la conversion thermique-électrique, ainsi que de consommations parasites d'énergie de chauffage. De plus, leurs caractères corrosif et comburant sont à l'origine de sévères contraintes de sécurité. Un nouveau concept de récepteur solaire, dont les caractéristiques permettent de s'affranchir des contraintes associées aux sels fondus, est présenté dans ce manuscrit. Il utilise des suspensions denses de particules fluidisées par un gaz comme fluide de transfert et de stockage de l'énergie thermique. Ce concept, et la technologie de récepteur associée, a été brevetée par Flamant et Hemati dans le cadre d'une collaboration entre le Laboratoire CNRS-PROMES d'Odeillo, et l'Institut National Polytechnique de Toulouse. Son développement a reçu le soutien financier du CNRS, puis de la Commission Européenne. Les propriétés thermiques du carbure de silicium ont déterminé le choix de ce solide. Le diamètre moyen des particules utilisées avoisine 60 micromètres (groupe A). Ces particules présentent d'excellentes propriétés de fluidisation pour des vitesses de gaz faibles. La construction et l'exploitation d'une maquette froide transparente ont permis de démontrer la faisabilité hydrodynamique du concept. Cette maquette est un échangeur à deux passes. Chaque passe est constituée de deux tubes verticaux en parallèle. L'une est traversée par un débit vertical ascendant de solide, l'autre descendant. Un débit de solide continu, stable et équitablement réparti a été obtenu à l'intérieur des tubes. La caractérisation hydrodynamique détaillée de l'écoulement, et du comportement globale de la maquette, en fonction des conditions opératoires, a été effectué sur la partie ascendante de l'écoulement dans l'échangeur. La construction et l'exploitation d'une maquette chaude, constituée d'un seul tube traversé par une suspension dense en écoulement ascendant, chauffé par 3 fours d'une puissance totale de 5,6 kW, a permis d'estimer la capacité de transfert thermique de ce nouveau type d'échangeur. Le contrôle et la stabilité des conditions opératoires a permis d'évaluer l'effet de ces dernières sur le transfert thermique entre l'échangeur et la suspension dense de fines particules le traversant. La modélisation par 3 approches du transport ascendant de la suspension dense a également été réalisée. Une approche corrélative 1D basée sur le formalisme du modèle Bulle-Emulsion, adapté afin de tenir compte de l'entraînement des particules dans le sillage des bulles. Ce modèle permet de représenter la structure diphasique de l'écoulement. Une autre approche 1D a été utilisée. Elle repose sur la résolution des équations locales de conservation de masse et de quantité de mouvement sur chaque phase gaz et solide. Cette méthode permet de s'affranchir des hypothèses du modèle Bulle-Emulsion. Enfin, la simulation numérique 3D a été réalisée sur un maillage complet du système, de telle sorte que les conditions aux bornes imposées son identiques à celle imposée par l'opérateur (débit de fluidisation, débit d'aération, débit de solide, pression de la nourrice). Cette dernière apporte des informations sur la structure locale de l'écoulement, dont les caractéristiques permettent d'expliquer l'efficacité du transfert thermique entre la suspension et la paroi observé expérimentalement. ABSTRACT : Among concentrating solar power plants, solar tower technology is one of the more power efficient. Nevertheless, their efficiency and safety can be improved. Indeed, molten salts, commonly used as heat transfer fluid, have a limited range of operating temperature (470-820K), thus lowering the thermal-electrical conversion efficiency, and increasing parasitic power consumption. Moreover, they are corrosive and combustion agent, leading to severe safety constraints. A new concept of solar receiver is presented in the present study, the characteristics of which avoid most of the molten salts drawbacks. It uses dense gas-particle suspension as heat transfer and storage fluid. This concept and the associated technology has been patented by Flamant et Hemati in the frame of a collaboration between the PROMES-CNRS Laboratory of Odeillo and the Polytechnic National Institute of Toulouse. Its development has been first supported by the CNRS, and later by the European Commission. Thermal properties of silicon carbide have determined the choice of this solid. The mean diameter of particles is around 64 microns (A group). These particles have excellent fluidisation properties at low gas velocities. The construction and the operation of a transparent cold mockup allowed demonstrating the hydrodynamic feasibility of this concept. This mockup is composed of two passes. Each pass is composed of two tubes in parallel. One pass is upward flow of solid, the other is downward flow. A steady, stable and evenly distributed solid flow has been set inside the tubes. The global behaviour of the system and the hydrodynamics of the suspension has been evaluated as a function of operating parameters on the upward pass. The construction and the operation of a hot mockup allowed estimating the heat transfer efficiency of this new kind of exchanger. On this mockup, the dense suspension flows upward inside a single tube, heated by three ovens of 5.6 kW total power. Thanks to the control and stability of the operating parameters, their effects on the heat transfer between the tube and the dense gas-solid suspension has been accurately determined. Modelling of the suspension upward flow has been performed using 3 approaches. The first one is based on the 1D Bubble-emulsion formalism, adapted to take into account the solid entrainment by the bubble wakes. It allows modelling the diphasic structure of the flow. The resolution of the local mass and momentum balance equation on each phase has also been performed. It allows to sidestep the Bubble-Emsulion assumptions, and to study the effects of drag models. 3D simulation has been performed on a complete mesh of the system, so that the boundary conditions are the same as those imposed by the operator (fluidisation flow rate, aeration flow rate, solid flow rate, dispenser pressure). These simulations give information on the local structure of the suspension flow, influencing on the heat transfer efficiency between the exchanger wall and the suspension

    Dense suspension of solid particles as a new heat transfer fluid for concentrated solar thermal plants: on-sun proof of concept

    Get PDF
    This paper demonstrates the capacity of dense suspensions of solid particles to transfer concentrated solar power from a tubular receiver to an energy conversion process by acting as a heat transfer fluid. Contrary to a circulating fluidized bed, the dense suspension of particles’ flows operates at low gas velocity and large solid fraction. A single-tube solar receiver was tested with 64 µm mean diameter silicon carbide particles for solar flux densities in the range 200–250 kW/m2, resulting in a solid particle temperature increase ranging between 50 °C and 150 °C. The mean wall-to-suspension heat transfer coefficient was calculated from experimental data. It is very sensitive to the particle volume fraction of the suspension, which was varied from 26 to 35%, and to the mean particle velocity. Heat transfer coefficients ranging from 140 W/m2 K to 500 W/m2 K have been obtained, thus corresponding to a 400 W/m2 K mean value for standard operating conditions (high solid fraction) at low temperature. A higher heat transfer coefficient may be expected at high temperatures because the wall-to-suspension heat transfer coefficient increases drastically with temperature. The suspension has a heat capacity similar to a liquid heat transfer fluid, with no temperature limitation but the working temperature limit of the receiver tube. Suspension temperatures of up to 750 °C are expected for metallic tubes, thus opening new opportunities for high efficiency thermodynamic cycles such as supercritical steam and supercritical carbon dioxide

    Hydrodynamics of Dense Fluidized Beds for Application in Concentrated Solar Energy Conversion

    Get PDF
    In the frame of the call for projects of the European Commission which aims to find alternative HTF in order to extend working temperature and to decrease environmental impact of standard Heat Transfer Fluid (HTF) used in concentrating solar power(CSP) plants, we proposed to use Dense Particle Suspensions -DPS- fluidized with air (approximately 50% of solid) in tubes as new HTF. DPS will enable operating temperature over 1 000°C which corresponds to the sintering temperatures of the solid against 560°C for the most efficient molten salts, thus increasing the plant efficiency and decreasing the cost per kWh produced, have no lower limitation of temperature and are riskless. A cold mockup of receiver using DPS has been built for the preliminary study of the concept. The operation of the mockup has shown the possibility to ensure a regular and adaptable upward flow of solid in the range 10 to 65 kg/h per tube. This paper compares the experimental results of the cold mockup running with the predictions of a multi-fluid approach 3D numerical code

    A new heat transfer fluid for concentrating solar systems: Particle flow in tubes

    Get PDF
    This paper demonstrates a new concept of heat transfer fluid (HTF) for CSP applications, developed in the frame of both a National and a European project (CSP2 FP7 project). It involves a dense suspension of small solid particles. This innovation is currently. The dense suspension of particles receiver (DSPR) consists in creating the upward circulation of a dense suspension of particles (solid fraction in the range 30%-40%) in vertical absorbing tubes submitted to concentrated solar energy. So the suspension acts as a heat transfer fluid with a heat capacity similar to a liquid HTF but only limited in temperature by the working temperature limit of the receiver tubes. Suspension temperatures up to 750°C are expected for metallic tubes, thus opening new opportunities for high efficiency thermodynamic cycles such as supercritical steam and carbon dioxide. First experimental results were obtained during on-sun testing with CNRS solar facility of a single tube DSPR for an outlet temperature lower than 300°C. In this lab-scale experimental setup, the solar absorber is a single opaque metallic tube, containing upward solid circulation, located inside a cylindrical cavity dug in a receiver made of refractory, and submitted to the concentrated solar radiation through a 0.10m x 0.50m slot. The absorber is a 42.4 mm o.d. stainless steel tube. SiC was used because of its thermal properties, availability and rather low cost. The 63.9 μm particle mean diameter permits a good fluidization with almost no bubbles, for very low air velocities. Solar flux densities in the range 200-250 kW/m2 were tested resulting in solid temperature increase ranging between 50 and 150°C. The mean wall-to-suspension heat transfer coefficient (h) was calculated from experimental data. It is very sensitive to the solid fraction of the solid suspension, which was varied from 27% to 36%. These latter values are one order of magnitude larger than the solid fraction in circulating fluidized beds operating at much higher air velocity. Heat transfer coefficients ranging from 140 to 500 W/m2.K have been obtained; i.e. 400 W/m2.K mean value for standard operating conditions at low temperature

    Using haematophagous fly blood meals to study the diversity of blood‐borne pathogens infecting wild mammals

    Get PDF
    Many emerging infectious diseases originate from wild animals, so there is a profound need for surveillance and monitoring of their pathogens. However, the practical difficulty of sample acquisition from wild animals tends to limit the feasibility and effectiveness of such surveys. Xenosurveillance, using blood-feeding invertebrates to obtain tissue samples from wild animals and then detect their pathogens, is a promising method to do so. Here, we describe the use of tsetse fly blood meals to determine (directly through molecular diagnostic and indirectly through serology), the diversity of circulating blood-borne pathogens (including bacteria, viruses and protozoa) in a natural mammalian community of Tanzania. Molecular analyses of captured tsetse flies (182 pools of flies totalizing 1728 flies) revealed that the blood meals obtained came from 18 different vertebrate species including 16 non-human mammals, representing approximately 25% of the large mammal species present in the study area. Molecular diagnostic demonstrated the presence of different protozoa parasites and bacteria of medical and/or veterinary interest. None of the six virus species searched for by molecular methods were detected but an ELISA test detected antibodies against African swine fever virus among warthogs, indicating that the virus had been circulating in the area. Sampling of blood-feeding insects represents an efficient and practical approach to tracking a diversity of pathogens from multiple mammalian species, directly through molecular diagnostic or indirectly through serology, which could readily expand and enhance our understanding of the ecology and evolution of infectious agents and their interactions with their hosts in wild animal communities

    Hydrodynamics and particle motion in upward flowing dense particle suspensions: application in solar receivers

    Get PDF
    Dense gas–solid suspensions have the potential to be applied as heat transfer fluids (HTF) for energy collection and storage in concentrated solar power plants. At the heart of these systems is the solar receiver, composed of a bundle of tubes which contain the solid suspension used as the thermal energy carrier. In the design investigated here, the particles form a dense upward-flowing suspension. Both density of the suspension of these particles and their movement have a strong influence on the heat transfer. An apparatus was designed to replicate the hydrodynamic and particle motion in the real solar energy plant at ambient temperature. The governing parameters of the flow were established as the solid feeding flow rate, the fluidisation velocity, the solids holdup, the freeboard pressure and the secondary air injection (aeration) velocity. In the case studied, aeration was applied with air introduced into the uplift transport tube some way up its length. This study finds that the amount of this secondary air injection is the most important parameter for the stability and the uniform distribution of the solids flow in the tubes. Solids motion was measured using the non-invasive positron emission particle tracking (PEPT) technique to follow the movement of a 60 µm tracer particle, onto which was adsorbed the positron emitting 18F radioisotope. Analysis of the resulting three-dimensional trajectories provides information on solids flow pattern and solids velocity. Results show the overall behaviour of the bulk material in detail: small step-wise movements associated with bubble motion superimposed on a general trend of upward flow in the centre and downward flow close to the walls. These findings suggest that this particular type of flow is ideal for transporting energy from the walls of the solar receiver tubes

    Hydrodynamic and Thermal Study of a New Concept of Solar Receiver using Dense Suspensions of Particles

    No full text
    Parmi les centrales solaires thermiques à concentration, la technologie des centrales à tour offre l'un des rendements les plus importants de production d'énergie. Néanmoins, l'efficacité et la sécurité de ces centrales sont améliorables. En effet, les sels fondus, généralement utilisés comme fluide de transfert thermique, présentent une plage limitée d'utilisation (200-550°C), à l'origine des limites d'efficacité de la conversion thermique-électrique, ainsi que de consommations parasites d'énergie de chauffage. De plus, leurs caractères corrosif et comburant sont à l'origine de sévères contraintes de sécurité. Un nouveau concept de récepteur solaire, dont les caractéristiques permettent de s'affranchir des contraintes associées aux sels fondus, est présenté dans ce manuscrit. Il utilise des suspensions denses de particules fluidisées par un gaz comme fluide de transfert et de stockage de l'énergie thermique. Ce concept, et la technologie de récepteur associée, a été brevetée par Flamant et Hemati dans le cadre d'une collaboration entre le Laboratoire CNRS-PROMES d'Odeillo, et l'Institut National Polytechnique de Toulouse. Son développement a reçu le soutien financier du CNRS, puis de la Commission Européenne. Les propriétés thermiques du carbure de silicium ont déterminé le choix de ce solide. Le diamètre moyen des particules utilisées avoisine 60 micromètres (groupe A). Ces particules présentent d'excellentes propriétés de fluidisation pour des vitesses de gaz faibles. La construction et l'exploitation d'une maquette froide transparente ont permis de démontrer la faisabilité hydrodynamique du concept. Cette maquette est un échangeur à deux passes. Chaque passe est constituée de deux tubes verticaux en parallèle. L'une est traversée par un débit vertical ascendant de solide, l'autre descendant. Un débit de solide continu, stable et équitablement réparti a été obtenu à l'intérieur des tubes. La caractérisation hydrodynamique détaillée de l'écoulement, et du comportement globale de la maquette, en fonction des conditions opératoires, a été effectué sur la partie ascendante de l'écoulement dans l'échangeur. La construction et l'exploitation d'une maquette chaude, constituée d'un seul tube traversé par une suspension dense en écoulement ascendant, chauffé par 3 fours d'une puissance totale de 5,6 kW, a permis d'estimer la capacité de transfert thermique de ce nouveau type d'échangeur. Le contrôle et la stabilité des conditions opératoires a permis d'évaluer l'effet de ces dernières sur le transfert thermique entre l'échangeur et la suspension dense de fines particules le traversant. La modélisation par 3 approches du transport ascendant de la suspension dense a également été réalisée. Une approche corrélative 1D basée sur le formalisme du modèle Bulle-Emulsion, adapté afin de tenir compte de l'entraînement des particules dans le sillage des bulles. Ce modèle permet de représenter la structure diphasique de l'écoulement. Une autre approche 1D a été utilisée. Elle repose sur la résolution des équations locales de conservation de masse et de quantité de mouvement sur chaque phase gaz et solide. Cette méthode permet de s'affranchir des hypothèses du modèle Bulle-Emulsion. Enfin, la simulation numérique 3D a été réalisée sur un maillage complet du système, de telle sorte que les conditions aux bornes imposées son identiques à celle imposée par l'opérateur (débit de fluidisation, débit d'aération, débit de solide, pression de la nourrice). Cette dernière apporte des informations sur la structure locale de l'écoulement, dont les caractéristiques permettent d'expliquer l'efficacité du transfert thermique entre la suspension et la paroi observé expérimentalement.Among concentrating solar power plants, solar tower technology is one of the more power efficient. Nevertheless, their efficiency and safety can be improved. Indeed, molten salts, commonly used as heat transfer fluid, have a limited range of operating temperature (470-820K), thus lowering the thermal-electrical conversion efficiency, and increasing parasitic power consumption. Moreover, they are corrosive and combustion agent, leading to severe safety constraints. A new concept of solar receiver is presented in the present study, the characteristics of which avoid most of the molten salts drawbacks. It uses dense gas-particle suspension as heat transfer and storage fluid. This concept and the associated technology has been patented by Flamant et Hemati in the frame of a collaboration between the PROMES-CNRS Laboratory of Odeillo and the Polytechnic National Institute of Toulouse. Its development has been first supported by the CNRS, and later by the European Commission. Thermal properties of silicon carbide have determined the choice of this solid. The mean diameter of particles is around 64 microns (A group). These particles have excellent fluidisation properties at low gas velocities. The construction and the operation of a transparent cold mockup allowed demonstrating the hydrodynamic feasibility of this concept. This mockup is composed of two passes. Each pass is composed of two tubes in parallel. One pass is upward flow of solid, the other is downward flow. A steady, stable and evenly distributed solid flow has been set inside the tubes. The global behaviour of the system and the hydrodynamics of the suspension has been evaluated as a function of operating parameters on the upward pass. The construction and the operation of a hot mockup allowed estimating the heat transfer efficiency of this new kind of exchanger. On this mockup, the dense suspension flows upward inside a single tube, heated by three ovens of 5.6 kW total power. Thanks to the control and stability of the operating parameters, their effects on the heat transfer between the tube and the dense gas-solid suspension has been accurately determined. Modelling of the suspension upward flow has been performed using 3 approaches. The first one is based on the 1D Bubble-emulsion formalism, adapted to take into account the solid entrainment by the bubble wakes. It allows modelling the diphasic structure of the flow. The resolution of the local mass and momentum balance equation on each phase has also been performed. It allows to sidestep the Bubble-Emsulion assumptions, and to study the effects of drag models. 3D simulation has been performed on a complete mesh of the system, so that the boundary conditions are the same as those imposed by the operator (fluidisation flow rate, aeration flow rate, solid flow rate, dispenser pressure). These simulations give information on the local structure of the suspension flow, influencing on the heat transfer efficiency between the exchanger wall and the suspension

    Experimental Hydrodynamic Study of Gas‐Particle Dense Suspension Upward Flow for Application as New Heat Transfer and Storage Fluid

    Get PDF
    International audienceThis paper focuses on a new concept of Heat Transfer Fluid (HTF) for Concentrating Solar Plants (CSP) applications through fluidized bed. CSP plants with very high concentration (such as solar tower plant technology) offer good efficiencies because of high operating temperatures. CSP efficiency could be greatly increased through more efficient HTF. Molten salts, mineral oils, water and air have some of the following drawbacks: limited range of operating temperatures, corrosiveness, high pressure, low energy storage capacity and toxicity.To replace classical HTF, Dense Particle Suspension (DPS) fluidized with air (approximately 40% of solid) is proposed. DPS has a volume heat capacity similar to those of liquid HTF, does not need pressurization, is safe, inert and is only limited by the maximal working temperature of the receiver material (1100 K), thus opening new opportunities for high efficiency thermodynamic cycles. This work is the hydrodynamic study of a gassolid dense suspension upward flow at ambient temperature, in a vertical 2‐tube bundle of small diameter tubes, which have their bottom immersed in a slightly pressurized fluidized bed (pressure approximately equal to the ratio of the solid weight in a tube over its cross section area). This type of flow is yet implemented in the field of hyper‐dense phase vertical conveying of powders and it is currently under development for solar receivers using dense suspensions of particles as heat transfer and storage medium. This application was patented by Flamant and Hemati in 2010 (France 1058565 (2010) CNRS/INP Toulouse, G. Flamant, H. Hemati; PCT Extension, No. WO 2012/052661 A2), and its development is funded by the European Commission. In this technological breakthrough, the concentrated solar energy is collected, carried and stored directly by the fine particles flowing upward, with a suspension void fraction close to that of a dense fluidized bed. Contrary to circulating fluidized bed “risers”, it offers a good contact area between the wall and the particles. The important hydrodynamic and thermal coupling required a step‐by‐step approach. Ambient flows had to be understood and controlled first. Thus a 2‐pass “cold” mock‐up, each pass composed of two vertical parallel tubes, was built. Pressure drop, solid weight and helium volume fraction measurements demonstrated the ability to handle a regular solid upward flow (imperative here), with solid flow rates from 20 to 130 kg/h, with void fractions from 0.57 to 0.63 and with an even distribution of the solid flow rate between the tubes. Moreover, the governing parameters of this flow were established as: the solid feeding flow rate, the fluidization velocity, the solid holdup, the freeboard pressure and the aeration velocity. The secondary air injection, also called “aeration”, is the most important parameter for the stability and the even distribution of the total solid flow rate in the tubes. The 1D modelling of the suspension flow in the tubes was also performed in the flow direction. The flow structure was described using the bubble‐emulsion model formalism, and by adding the solid entrainment by the bubble wake. Predictions of the model are compared with the experimental measurements of driving pressure and axial pressure profile along the tubes

    Etude hydrodynamique d’un nouveau concept de récepteur solaire à suspension dense de particules

    No full text
    Le concept proposé met en œuvre des suspensions denses de particules fines (classe A ou A/B de la classification de Geldart) en tant que nouveau fluide caloporteur afin d'améliorer les performances des centrales solaires à concentration. En effet, ces suspensions de gaz et de solide ont le comportement d'un fluide et permettent d'atteindre des températures beaucoup plus élevées qu'avec les fluides caloporteurs classiques (huiles minérales, sels fondus). Cette étude associe le Laboratoire de Génie Chimique (LGC) de Toulouse et le Laboratoire Procédés, Matériaux et Énergie Solaire (CNRS-PROMES) d'Odeillo ; elle a été soutenue par le Programme Interdisciplinaire Énergie du CNRS et est prolongée dans le cadre du projet européen CSP2, « Concentrating Solar Power in Particles ». Ce papier présente la technologie permettant la mise en circulation de la suspension dans un échangeur vertical multitubulaire et multipasse et rappelle les différents régimes rencontrés dans ce type d'écoulement. L'échange thermique entre la paroi chauffée par le rayonnement et les particules étant fortement dépendant du régime d'écoulement, la caractérisation du régime en fonction des conditions de fonctionnement est donc capitale. L'étude est focalisée sur l'écoulement ascendant du solide dans l'échangeur et la comparaison des résultats expérimentaux obtenus sur le pilote « froid » installé au LGC avec les prédictions d’un modèle 1D diphasique « Bulle-Émulsion », adapté pour tenir compte de l'entraînement des particules dans le sillage des bulles et l'évolution des propriétés physiques de l'air d'aération en fonction de la pression locale

    Dense gas-particle suspension upward flow used as heat transfer fluid in solar receiver::PEPT experiments and 3D numerical simulations

    Get PDF
    International audienceA dense particle suspension, also called an upflow bubbling fluidized bed, is an innovative alternative to the heat transfer fluids commonly used in concentrated solar power plants. An additional advantage of this technology is that it allows for direct thermal storage due to the large heat capacity and maximum temperature of the particle suspension. The key to the proposed process is the effective heat transfer from the solar heated surfaces to the heat transfer fluid, i.e. the circulating solid suspension. In order to better understand the process and to optimise the design of the solar receiver, it is of paramount importance to know how particles behave inside the bundle of small tubes. To access to the particle motion in the solar receiver, two different techniques are carried out: experimental using positron emission particle tracking (PEPT) and 3D numerical simulation via an Eulerian n-fluid approach with NEPTUNE_CFD code. Both numerical predictions and PEPT measurements describe an upward flow at the centre of the transport tube with a back-mixing flow near the wall which influences the heat transfer mechanism. Comparisons between experiment and computation were carried out for the radial profiles of the solid volume fraction, and vertical and radial time-averaged and variance velocities of solid, and demonstrating the capability of NEPTUNE_CFD code to simulate this peculiar upflow bubbling fluidized bed
    corecore