82 research outputs found

    SARS-CoV-2 incidence in secondary schools: the role of national and school-initiated COVID-19 measures

    Get PDF
    INTRODUCTION: Our aim was to gain insight into the effect of COVID-19 measures on SARS-CoV-2 incidence in secondary schools and the association with classroom CO 2 concentration and airborne contamination. METHODS: Between October 2020-June 2021, 18 schools weekly reported SARS-CoV-2 incidence and completed surveys on school-initiated COVID-19 measures (e.g. improving hygiene or minimizing contacts). CO 2 was measured in occupied classrooms twice, and SARS-CoV-2 air contamination longitudinally using electrostatic dust collectors (EDC) and analyzed using RT-qPCR. National COVID-19 policy measures varied during pre-lockdown, lockdown and post-lockdown periods. During the entire study, schools were recommended to improve ventilation. SARS-CoV-2 incidence rate ratios (IRR) were estimated by Generalized Estimating Equation (GEE) models. RESULTS: During 18 weeks follow-up (range: 10-22) SARS-CoV-2 school-incidence decreased during national lockdown (adjusted IRR: 0.41, 95%CI: 0.21-0.80) and post-lockdown (IRR: 0.60, 0.39-0.93) compared to pre-lockdown. School-initiated COVID-19 measures had no additional effect. Pre-lockdown, IRRs per 10% increase in time CO 2 exceeded 400, 550 and 800 ppm above outdoor level respectively, were 1.08 (1.00-1.16), 1.10 (1.02-1.19), and 1.08 (0.95-1.22). Post-lockdown, CO 2-concentrations were considerably lower and not associated with SARS-CoV-2 incidence. No SARS-CoV-2 RNA was detected in any of the EDC samples. CONCLUSION: During a period with low SARS-CoV-2 population immunity and increased attention to ventilation, with CO 2 levels most of the time below acceptable thresholds, only the national policy during and post-lockdown of reduced class-occupancy, stringent quarantine, and contact testing reduced SARS-CoV-2 incidence in Dutch secondary schools. Widespread SARS-CoV-2 air contamination could not be demonstrated in schools under the prevailing conditions during the study

    Indoor environmental quality and occupant satisfaction in green-certified buildings

    Get PDF
    Green building certification systems aim at improving the design and operation of buildings. However, few detailed studies have investigated whether green rating leads to higher occupant satisfaction with indoor environmental quality (IEQ). This research builds on previous work to address this. Based on the analysis of a subset of the Center for the Built Environment Occupant Indoor Environmental Quality survey database featuring 11,243 responses from 93 LEED-rated office buildings, we explored the relationships between the points earned in the IEQ category and the satisfaction expressed by occupants with the qualities of their indoor environment. We found that the achievement of a specific IEQ credit did not substantively increase satisfaction with the corresponding IEQ factor, while the rating level, and the product and version under which certification had been awarded, did not affect workplace satisfaction. There could be several reasons for this lack of relationships, some of which are outside the control of designers and beyond the scope of rating systems based primarily on design intent. We conclude with a discussion of the challenges and priorities that building professionals, researchers, and green building certification systems need to consider for moving us towards more comfortable, higher performing, and healthier green-rated buildings

    Knock Down of Heat Shock Protein 27 (HspB1) Induces Degradation of Several Putative Client Proteins

    Get PDF
    Hsp27 belongs to the heat shock protein family and displays chaperone properties in stress conditions by holding unfolded polypeptides, hence avoiding their inclination to aggregate. Hsp27 is often referenced as an anti-cancer therapeutic target, but apart from its well-described ability to interfere with different stresses and apoptotic processes, its role in non-stressed conditions is still not well defined. In the present study we report that three polypeptides (histone deacetylase HDAC6, transcription factor STAT2 and procaspase-3) were degraded in human cancerous cells displaying genetically decreased levels of Hsp27. In addition, these proteins interacted with Hsp27 complexes of different native size. Altogether, these findings suggest that HDAC6, STAT2 and procaspase-3 are client proteins of Hsp27. Hence, in non stressed cancerous cells, the structural organization of Hsp27 appears to be a key parameter in the regulation by this chaperone of the level of specific polypeptides through client-chaperone type of interactions

    Dismantling myths on the airborne transmission of severe acute respiratory syndrome coronavirus (SARS-CoV-2)

    Get PDF
    The Covid-19 pandemic has caused untold disruption and enhanced mortality rates around the world. Understanding the mechanisms for transmission of SARS-CoV-2 is key to preventing further spread but there is confusion over the meaning of “airborne” whenever transmission is discussed. Scientific ambivalence originates from evidence published many years ago, which has generated mythological beliefs that obscure current thinking. This article gathers together and explores some of the most commonly held dogmas on airborne transmission in order to stimulate revision of the science in the light of current evidence. Six ‘myths’ are presented, explained, and ultimately refuted on the basis of recently published papers and expert opinion from previous work related to similar viruses. There is little doubt that SARS-CoV-2 is transmitted via a range of airborne particle sizes subject to all the usual ventilation parameters and human behaviour. Experts from specialties encompassing aerosol studies, ventilation, engineering, physics, virology and clinical medicine have joined together to present this review, in order to consolidate the evidence for airborne transmission mechanisms and offer justification for modern strategies for prevention and control of Covid-19 in healthcare and community

    Human cytomegalovirus immediate-early 1 protein rewires upstream STAT3 to downstream STAT1 signaling switching an IL6-type to an IFNγ-like response

    Get PDF
    MN and CP were supported by the Wellcome Trust (www.wellcome.ac.uk) Institutional Strategic Support Fund and CP was supported by the Deutsche Forschungsgemeinschaft (PA 815/2-1; www.dfg.de).The human cytomegalovirus (hCMV) major immediate-early 1 protein (IE1) is best known for activating transcription to facilitate viral replication. Here we present transcriptome data indicating that IE1 is as significant a repressor as it is an activator of host gene expression. Human cells induced to express IE1 exhibit global repression of IL6- and oncostatin M-responsive STAT3 target genes. This repression is followed by STAT1 phosphorylation and activation of STAT1 target genes normally induced by IFNγ. The observed repression and subsequent activation are both mediated through the same region (amino acids 410 to 445) in the C-terminal domain of IE1, and this region serves as a binding site for STAT3. Depletion of STAT3 phenocopies the STAT1-dependent IFNγ-like response to IE1. In contrast, depletion of the IL6 receptor (IL6ST) or the STAT kinase JAK1 prevents this response. Accordingly, treatment with IL6 leads to prolonged STAT1 instead of STAT3 activation in wild-type IE1 expressing cells, but not in cells expressing a mutant protein (IE1dl410-420) deficient for STAT3 binding. A very similar STAT1-directed response to IL6 is also present in cells infected with a wild-type or revertant hCMV, but not an IE1dl410-420 mutant virus, and this response results in restricted viral replication. We conclude that IE1 is sufficient and necessary to rewire upstream IL6-type to downstream IFNγ-like signaling, two pathways linked to opposing actions, resulting in repressed STAT3- and activated STAT1-responsive genes. These findings relate transcriptional repressor and activator functions of IE1 and suggest unexpected outcomes relevant to viral pathogenesis in response to cytokines or growth factors that signal through the IL6ST-JAK1-STAT3 axis in hCMV-infected cells. Our results also reveal that IE1, a protein considered to be a key activator of the hCMV productive cycle, has an unanticipated role in tempering viral replication.Publisher PDFPeer reviewe
    corecore