2,979 research outputs found

    Limitations in Predicting Radiation-Induced Pharmaceutical Instability during Long-Duration Spaceflight

    Get PDF
    As human spaceflight seeks to expand beyond low-Earth orbit, NASA and its international partners face numerous challenges related to ensuring the safety of their astronauts, including the need to provide a safe and effective pharmacy for long-duration spaceflight. Historical missions have relied upon frequent resupply of onboard pharmaceuticals; as a result, there has been little study into the effects of long-term exposure of pharmaceuticals to the space environment. Of particular concern are the long-term effects of space radiation on drug stability, especially as missions venture away from the protective proximity of the Earth. Here we highlight the risk of space radiation to pharmaceuticals during exploration spaceflight, identifying the limitations of current understanding. We further seek to identify ways in which these limitations could be addressed through dedicated research efforts aimed towards the rapid development of an effective pharmacy for future spaceflight endeavors.Comment: in press, Nature Microgravit

    Physical Activity Belief Scales for Diabetes Risk: Development and Psychometric Testing

    Get PDF
    This article describes the development and psychometric evaluation of behavioral belief, normative belief, and control belief scales, derived from the theory of planned behavior to predict physical activity intentions of persons at risk for diabetes. In Study 1, belief statements from interviews were categorized, ranked, and evaluated for item construction. Content validity was established by 96. 1 % agreement among a five-member expert panel. In Study 2, items developed from the belief statements were administered to 106 adults at risk for diabetes. Psychometric analyses provided evidence of construct validity and reliability of the three scales. Internal consistency was sufficient (α = .76-.95), and test-retest evaluations indicated scale stability (r = .79- .91). Factor analyses and confirmatory factor analysis using structural equation modeling provided evidence that the items were appropriately grouped under each construct. Researchers and practitioners can use these measures to assess behavioral, normative, and control beliefs about physical activity among persons at risk for diabetes

    Preliminary results of fast neutron treatments in carcinoma of the pancreas

    Get PDF
    A group of 30 patients with adenocarcinoma of the pancreas including some patients with very advanced disease, were treated with the so-called mixed beam modality employing photon treatments three times per week and neutron treatments twice a week. Two hundred Rads or equivalent Rads (RBE 3.3) were given in daily fractions aiming at a total dose of 6000 Rads in 6 to 8 weeks. The treatments were well tolerated and significant palliation was achieved in 26 to 30 cases. Twelve months survival was 33 percent with a median survival of 7 months or 210 days. Treatment techniques and localization procedures are discussed

    Platform for enhanced detection efficiency in luminescence-based sensors

    Get PDF
    Luminescence-based biochip measurement platforms are employed in a wide range of biological applications, such as biomedical diagnostics. Based on an understanding of the anisotropic emission properties of luminescence emitters close to a dielectric interface, a simple strategy for producing a better than 25-fold enhancement of the detected luminescence is presented. This strategy is demonstrated for low cost polymer platforms compatible with mass-production

    Eleven years of monitoring the Seyfert 1 Mrk 335 with Swift: Characterizing the X-ray and UV/optical variability

    Full text link
    The narrow-line Seyfert 1 galaxy (NLS1) Mrk 335 has been continuously monitored with Swift since May 2007 when it fell into a long-lasting, X-ray low-flux interval. Results from the nearly 11 years of monitoring are presented here. Structure functions are used to measure the UV-optical and X-ray power spectra. The X-ray structure function measured between 10-100 days is consistent with the flat, low-frequency part of the power spectrum measured previously in Mrk 335. The UV-optical structure functions of Mrk 335 are comparable with those of other Seyfert 1 galaxies and of Mrk 335 itself when it was in a normal bright state. There is no indication that the current X-ray low-flux state is attributed to changes in the accretion disc structure of Mrk 335. The characteristic timescales measured in the structure functions can be attributed to thermal (for the UV) and dynamic (for the optical) timescales in a standard accretion disc. The high-quality UVW2 (~1800 A in the source frame) structure function appears to have two breaks and two different slopes between 10-160 days. Correlations between the X-ray and other bands are not highly significant when considering the entire 11-year light curves, but more significant behaviour is present when considering segments of the light curves. A correlation between the X-ray and UVW2 in 2014 (Year-8) may be predominately caused by an giant X-ray flare that was interpreted as jet-like emission. In 2008 (Year-2), possible lags between the UVW2 emission and other UV-optical waveband may be consistent with reprocessing of X-ray or UV emission in the accretion disc.Comment: Figure 8b has been corrected. 12 pages. Accepted for publication in MNRA

    Linearized gravity and gauge conditions

    Get PDF
    In this paper we consider the field equations for linearized gravity and other integer spin fields on the Kerr spacetime, and more generally on spacetimes of Petrov type D. We give a derivation, using the GHP formalism, of decoupled field equations for the linearized Weyl scalars for all spin weights and identify the gauge source functions occuring in these. For the spin weight 0 Weyl scalar, imposing a generalized harmonic coordinate gauge yields a generalization of the Regge-Wheeler equation. Specializing to the Schwarzschild case, we derive the gauge invariant Regge-Wheeler and Zerilli equation directly from the equation for the spin 0 scalar.Comment: 24 pages, corresponds to published versio

    Edge pixel response studies of edgeless silicon sensor technology for pixellated imaging detectors

    Get PDF
    Silicon sensor technologies with reduced dead area at the sensor's perimeter are under development at a number of institutes. Several fabrication methods for sensors which are sensitive close to the physical edge of the device are under investigation utilising techniques such as active-edges, passivated edges and current-terminating rings. Such technologies offer the goal of a seamlessly tiled detection surface with minimum dead space between the individual modules. In order to quantify the performance of different geometries and different bulk and implant types, characterisation of several sensors fabricated using active-edge technology were performed at the B16 beam line of the Diamond Light Source. The sensors were fabricated by VTT and bump-bonded to Timepix ROICs. They were 100 and 200 μ m thick sensors, with the last pixel-to-edge distance of either 50 or 100 μ m. The sensors were fabricated as either n-on-n or n-on-p type devices. Using 15 keV monochromatic X-rays with a beam spot of 2.5 μ m, the performance at the outer edge and corners pixels of the sensors was evaluated at three bias voltages. The results indicate a significant change in the charge collection properties between the edge and 5th (up to 275 μ m) from edge pixel for the 200 μ m thick n-on-n sensor. The edge pixel performance of the 100 μ m thick n-on-p sensors is affected only for the last two pixels (up to 110 μ m) subject to biasing conditions. Imaging characteristics of all sensor types investigated are stable over time and the non-uniformities can be minimised by flat-field corrections. The results from the synchrotron tests combined with lab measurements are presented along with an explanation of the observed effects

    Strichartz estimates on Schwarzschild black hole backgrounds

    Get PDF
    We study dispersive properties for the wave equation in the Schwarzschild space-time. The first result we obtain is a local energy estimate. This is then used, following the spirit of earlier work of Metcalfe-Tataru, in order to establish global-in-time Strichartz estimates. A considerable part of the paper is devoted to a precise analysis of solutions near the trapping region, namely the photon sphere.Comment: 44 pages; typos fixed, minor modifications in several place

    Erratum: Leakage current measurements of a pixelated polycrystalline CVD diamond detector

    Get PDF
    This is an erratum for the article 2013 JINST 8 C0105
    corecore