552 research outputs found

    Hue shifts as a function of intermittent photic stimulation

    Get PDF
    Hue shifts of the Bezold-Brucke effect, a phenomenon operating as a function of brightness, were studied

    Financial stability evaluation of banks of the Russian Federation

    Get PDF
    In this paper we propose the model for evaluating financial stability of the Russian Federation banks by using discriminatory analysis. The statistical significance of the model was established. Critical value of the resulting was measured. The result of this research can be used in the area of banking

    Perfringolysin O-induced plasma membrane pores trigger actomyosin remodeling and endoplasmic reticulum redistribution

    Get PDF
    Clostridium perfringens produces an arsenal of toxins that act together to cause severe infections in humans and livestock animals. Perfringolysin O (PFO) is a cholesterol-dependent pore-forming toxin encoded in the chromosome of virtually all C. perfringens strains and acts in synergy with other toxins to determine the outcome of the infection. However, its individual contribution to the disease is poorly understood. Here, we intoxicated human epithelial and endothelial cells with purified PFO to evaluate the host cytoskeletal responses to PFO-induced damage. We found that, at sub-lytic concentrations, PFO induces a profound reorganization of the actomyosin cytoskeleton culminating into the assembly of well-defined cortical actomyosin structures at sites of plasma membrane (PM) remodeling. The assembly of such structures occurs concomitantly with the loss of the PM integrity and requires pore-formation, calcium influx, and myosin II activity. The recovery from the PM damage occurs simultaneously with the disassembly of cortical structures. PFO also targets the endoplasmic reticulum (ER) by inducing its disruption and vacuolation. ER-enriched vacuoles were detected at the cell cortex within the PFO-induced actomyosin structures. These cellular events suggest the targeting of the endothelium integrity at early stages of C. perfringens infection, in which secreted PFO is at sub-lytic concentrations.This work was financed by FEDER—Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020—Operacional Programme for Competitiveness and Internationalisation (POCI), Portugal 2020, and by Portuguese funds through FCT - Fundação para a Ciência e a Tecnologia/Ministério da Ciência, Tecnologia e Ensino Superior in the framework of the project POCI-01-0145-FEDER-030863 (PTDC/BIA-CEL/30863/2017) and Norte-01-0145-FEDER-000012—Structured program on bioengineered therapies for infectious diseases and tissue regeneration, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (FEDER). Publication Fees were supported by ICBAS, University of Porto. CB and FSM were supported by FCT fellowships (SFRH/BD/112217/2015, SFRH/BPD/94458/2013, respectively). CB was a Fulbright and FLAD fellow. SS received support from FCT Investigator program (COMPETE, POPH, and FCT)

    Global ocean modeling and state estimation in support of climate research

    Get PDF
    During the last decade it has become obvious that the ocean circulation shows vigorous variability on a wide range of time and space scales and that the concept of a "sluggish" and slowly varying circulation is rather elusive. Increasing emphasis has to be put, therefore, on observing the rapidly changing ocean state on time scales ranging from weeks to decades and beyond, and on understanding the ocean's response to changing atmospheric forcing conditions. As outlined in various strategy and implementation documents (e.g., the implementation plans of WOCE, AMS, CLIVAR, and GODAE) a combination of the global ocean data sets with a state-of-the-art numerical circulation model is required to interpret the various diverse data sets and to produce the best possible estimates of the time-varying ocean circulation. The mechanism of ocean state estimates is a powerful tool for such a "synthesis" of observations, obtained on very complex space-time pattern, into one dynamically consistent picture of the global time-evolving ocean circulation. This process has much in common with ongoing analysis and reanalysis activities in the atmospheric community. But because the ocean is, and will remain for the foreseeable future, substantially under-sampled, the burden put on the modeling and estimations components is substantially larger than in the atmosphere. Moreover, the smaller dynamical eddy scales which need to be properly parameterized or resolved in ocean model simulations, put stringent requirements on computational resources for ongoing and participated climate research

    VEGF induces signalling and angiogenesis by directing VEGFR2 internalisation via macropinocytosis

    Get PDF
    Endocytosis plays critical role in receptor signalling. VEGFR2 and its ligand VEGFA are fundamental in neovascularization. Yet, our understanding of the role of endocytosis in VEGFR2 signalling remains limited. Despite the existence of diverse internalisation routes, the only known endocytic pathway of VEGFR2 is the clathrin-mediated. Here, we show that this pathway is the predominant internalisation route of VEGFR2 only in the absence of ligand. Intriguingly, VEGF introduces a novel internalisation itinerary for VEGFR2, the pathway of macropinocytosis, which becomes the prevalent endocytic route of the receptor in the presence of ligand, while the route of clathrin becomes minor. Macropinocytic internalisation of VEGFR2, which mechanistically is mediated via the small GTPase CDC42, takes place via macropinosomes generated at ruffling areas of the membrane. Interestingly, macropinocytosis plays critical role in VEGF-induced signalling, endothelial cell functions in vitro and angiogenesis in vivo, while clathrin-mediated endocytosis is not essential for VEGF signalling. These findings expand our knowledge on the endocytic pathways of VEGFR2 and suggest that VEGF-driven internalisation of VEGFR2 via macropinocytosis is essential for endothelial cell signalling and angiogenesis

    Analysis of a rapid sea ice retreat event in the Bellingshausen Sea

    Get PDF
    The winter advance of the sea ice edge in the Bellingshausen Sea is frequently interrupted by periods of rapid retreat lasting a few days. The frequency and duration of such events strongly controls the location of the late winter sea ice edge in this sector of the Antarctic. We examine the dynamics and thermodynamics of a retreat event that occurred in May 2001 using data from a drifting buoy array together with diagnostics from a kinematic/thermodynamic ice growth model and a high-resolution (11 km) regional coupled ocean-ice model. During the retreat event, the ice edge retreated by 250 km over 13 days in response to strong and persistent northerly winds associated with a quasi-stationary low-pressure system. Ice motion in the outer part of the pack was convergent and correlated strongly with local wind forcing. By contrast, in the region closer to the coast, ice motion was less well correlated with wind forcing. Model diagnostics indicate that ice thickening resulting from convergence in the outer pack was largely balanced by basal melting. In the outer pack, ice was in a state close to free drift while, closer to the coast, internal ice stresses became significant. The ocean-ice model simulated the characteristics of the retreat event realistically, giving us confidence in the ability of such models to reproduce ice conditions in this sector
    corecore