78 research outputs found

    Conception d'un procédé d'électrosynthÚse microbienne

    Get PDF
    L’électrosynthĂšse microbienne est une technologie innovante qui permet de convertir le dioxyde de carbone en molĂ©cules organiques en utilisant une cathode comme source d’électrons de la rĂ©duction microbienne du CO2. Le procĂ©dĂ© «Biorare» propose de coupler l’électrosynthĂšse microbienne avec l’oxydation de dĂ©chets Ă  l’anode afin d’augmenter le rendement Ă©nergĂ©tique du procĂ©dĂ©. Il devient ainsi possible de traiter un effluent Ă  l’anode et de valoriser du CO2 Ă  la cathode. La thĂšse a eu pour objectif d’amĂ©liorer les performances de la bioanode et de la biocathode sĂ©parĂ©ment, afin de rĂ©aliser in fine un prototype de procĂ©dĂ© «Biorare» Ă  l’échelle du laboratoire. Parmi plusieurs types de dĂ©chets testĂ©s, les boues biologiques se sont avĂ©rĂ©es bien adaptĂ©es pour une utilisation Ă  l’anode en assurant des densitĂ©s de courant jusqu’à 10 A/m2. Toutefois, ces performances Ă©tant peu reproductibles, nous avons choisi d’exploiter des biodĂ©chets, dont le gisement reprĂ©sente plus de 22 millions de tonnes en France et la valorisation est aujourd’hui obligatoire. Leur utilisation brute n’a pas permis de dĂ©passer 1 A/m2 mais une mĂ©thode innovante de formation des bioanodes a permis d’augmenter les densitĂ©s de courant jusqu’à 7 A/m2, de façon reproductible et dans des conditions extrapolables. Les travaux sur les biocathodes ont rĂ©vĂ©lĂ© que l’hydrogĂšne est un intermĂ©diaire rĂ©actionnel clĂ© pour le transfert d’électrons de la cathode vers les microorganismes qui rĂ©duisent le CO2. Cela a conduit Ă  dĂ©coupler le procĂ©dĂ© initial en deux Ă©tapes : l’hydrogĂšne est produit dans une cellule d’électrolyse microbienne qui oxyde les biodĂ©chets et, en aval, un biorĂ©acteur gaz-liquide utilise l’hydrogĂšne pour convertir le CO2 en acĂ©tate, Ă©thanol, formiate, ou butyrate, suivant les systĂšmes microbiens. Cette stratĂ©gie permet d’augmenter les performances d’un facteur 24 avec une vitesse de production d’acĂ©tate de 376 mg/L/j et des concentrations jusqu’à 11 g/L

    Pheochromocytoma and Paraganglioma: Current Functional and Future Molecular Imaging

    Get PDF
    Paragangliomas are neural crest-derived tumors, arising either from chromaffin sympathetic tissue (in adrenal, abdominal, intra-pelvic, or thoracic paraganglia) or from parasympathetic tissue (in head and neck paraganglia). They have a specific cellular metabolism, with the ability to synthesize, store, and secrete catecholamines (although most head and neck paragangliomas do not secrete any catecholamines). This disease is rare and also very heterogeneous, with various presentations (e.g., in regards to localization, multifocality, potential to metastasize, biochemical phenotype, and genetic background). With growing knowledge, notably about the pathophysiology and genetic background, guidelines are evolving rapidly. In this context, functional imaging is a challenge for the management of paragangliomas. Nuclear imaging has been used for exploring paragangliomas for the last three decades, with MIBG historically as the first-line exam. Tracers used in paragangliomas can be grouped in three different categories. Agents that specifically target catecholamine synthesis, storage, and secretion pathways include: 123 and 131I-metaiodobenzylguanidine (123/131I-MIBG), 18F-fluorodopamine (18F-FDA), and 18F-fluorodihydroxyphenylalanine (18F-FDOPA). Agents that bind somatostatin receptors include 111In-pentetreotide and 68Ga-labeled somatostatin analog peptides (68Ga-DOTA-TOC, 68Ga-DOTA-NOC, 68Ga-DOTA-TATE). The non-specific agent most commonly used in paragangliomas is 18F-fluorodeoxyglucose (18F-FDG). This review will first describe conventional scintigraphic exams that are used for imaging paragangliomas. In the second part we will emphasize the interest in new PET approaches (specific and non-specific), considering the growing knowledge about genetic background and pathophysiology, with the aim of understanding how tumors behave, and optimally adjusting imaging technique for each tumor type

    Coupled iron-microbial catalysis for CO 2 hydrogenation with multispecies microbial communities

    Get PDF
    The hydrogenation of carbon dioxide offers a large range of possible reactions for converting hydrogen to chemical compounds that can be easily stored, transported and used as fuels or platform molecules. In this study, CO2 hydrogenation was biocatalysed by multispecies microbial communities to produce formate, butyrate and acetate. A hybrid metal/microbial catalysis was pointed out in the presence of iron. Addition of FeCl3 10 mM increased the production of acetate by 265% and butyrate by 73%, to 5.26 and 14.19 g/L, respectively. A stable acetate production rate of 830 mg/L/d was thus sustained for more than 20 days. The presence of iron promoted the selection of Firmicutes and the best performances were linked to the growth of a restricted number of dominant species of two genera: Clostridium and Megasphaera. Various possible catalysis mechanisms are discussed and guidelines are proposed for further development and scale-up of the process

    Protons accumulation during anodic phase turned to advantage for oxygen reduction during cathodic phase in reversible bioelectrodes

    Get PDF
    Reversible bioelectrodes were designed by alternating acetate and oxygen supply. It was demonstrated that the protons produced and accumulated inside the biofilm during the anodic phase greatly favored the oxygen reduction reaction when the electrode was switched to become the biocathode. Protons accumulation, which hindered the bioanode operation, thus became an advantage for the biocathode. The bioanodes, formed from garden compost leachate under constant polarization at −0.2 V vs. SCE, were able to support long exposure to forced aeration, with only a slight alteration of their anodic efficiency. They produced a current density of 16 ± 1.7 A/m2 for acetate oxidation and up to −0.4 A/m2 for oxygen reduction. Analysis of the microbial communities by 16S rRNA pyrosequencing revealed strong selection of Chloroflexi (49 ± 1%), which was not observed for conventional bioanodes not exposed to oxygen. Chloroflexi were found as the dominant phylum of electroactive biofilms for the first time

    Design of a microbial electrosynthesis cell

    No full text
    L’électrosynthĂšse microbienne est une technologie innovante qui permet de convertir le dioxyde de carbone en molĂ©cules organiques en utilisant une cathode comme source d’électrons de la rĂ©duction microbienne du CO2. Le procĂ©dĂ© «Biorare» propose de coupler l’électrosynthĂšse microbienne avec l’oxydation de dĂ©chets Ă  l’anode afin d’augmenter le rendement Ă©nergĂ©tique du procĂ©dĂ©. Il devient ainsi possible de traiter un effluent Ă  l’anode et de valoriser du CO2 Ă  la cathode. La thĂšse a eu pour objectif d’amĂ©liorer les performances de la bioanode et de la biocathode sĂ©parĂ©ment, afin de rĂ©aliser in fine un prototype de procĂ©dĂ© «Biorare» Ă  l’échelle du laboratoire. Parmi plusieurs types de dĂ©chets testĂ©s, les boues biologiques se sont avĂ©rĂ©es bien adaptĂ©es pour une utilisation Ă  l’anode en assurant des densitĂ©s de courant jusqu’à 10 A/m2. Toutefois, ces performances Ă©tant peu reproductibles, nous avons choisi d’exploiter des biodĂ©chets, dont le gisement reprĂ©sente plus de 22 millions de tonnes en France et la valorisation est aujourd’hui obligatoire. Leur utilisation brute n’a pas permis de dĂ©passer 1 A/m2 mais une mĂ©thode innovante de formation des bioanodes a permis d’augmenter les densitĂ©s de courant jusqu’à 7 A/m2, de façon reproductible et dans des conditions extrapolables. Les travaux sur les biocathodes ont rĂ©vĂ©lĂ© que l’hydrogĂšne est un intermĂ©diaire rĂ©actionnel clĂ© pour le transfert d’électrons de la cathode vers les microorganismes qui rĂ©duisent le CO2. Cela a conduit Ă  dĂ©coupler le procĂ©dĂ© initial en deux Ă©tapes : l’hydrogĂšne est produit dans une cellule d’électrolyse microbienne qui oxyde les biodĂ©chets et, en aval, un biorĂ©acteur gaz-liquide utilise l’hydrogĂšne pour convertir le CO2 en acĂ©tate, Ă©thanol, formiate, ou butyrate, suivant les systĂšmes microbiens. Cette stratĂ©gie permet d’augmenter les performances d’un facteur 24 avec une vitesse de production d’acĂ©tate de 376 mg/L/j et des concentrations jusqu’à 11 g/L.Microbial electrosynthesis is an innovative technology to produce organic molecules from CO2, using a cathode as electron source for the microbial reduction of CO2. The Biorare process intends to associate the microbial electrosynthesis with the oxidation of organic wastes at the anode, in order to increase the energetic yield of the process. The system allows thus both the treatment of polluted effluents at the anode and CO2 valorization to organic molecules at the cathode. The purpose of the PhD work was to improve the bioanode and biocathode performance separately, to finally design a Biorare prototype at laboratory scale. Among the various wastes tested, biological sludge was a good substrate, which led to current densities up to 10 A/m2. However, the performance was not reproducible and it was decided to use food wastes, which constitute an abundant resource of 22 million tons in France that must be valorized. The use of raw food waste did not allow exceeding 1 A/m2, but a new method for bioanode formation improved the current density up to 7 A/m2 in a reproducible and close-to-industrial way. The study on biocathodes revealed hydrogen as a key intermediate in electron transfer from the cathode to the microbial cells that reduce CO2. This led to dissociate the initial process into two steps: hydrogen is produced in a microbial electrolysis cell that oxidizes food wastes and, downstream, a gas-liquid bioreactor uses hydrogen to convert CO2 to acetate, ethanol, formate or butyrate, depending on the microbial system. This strategy allowed increasing the performance by a factor 24 with a maximal acetate production rate of 376 mg/L/j and concentrations up to 11 g/L

    Imagerie de la prolifération cellulaire dans le paragangliome par la TEP à la 18F- Fluorothymidine

    No full text
    ANGERS-BU MĂ©decine-Pharmacie (490072105) / SudocSudocFranceF

    Grossesse et travail ::favoriser le maintien au poste de travail de type administratif : projet pilote au sein d’un hîpital

    No full text
    La grossesse fait l’objet de dispositions lĂ©gales pour la protection des femmes enceintes et de l’enfant Ă  naĂźtre (OProMa, 2015 ; SECO, 2021). La lĂ©gislation suisse prĂ©voit que lorsque l’activitĂ© expose une femme Ă  des risques pour sa grossesse, l’employeur doit lui proposer une activitĂ© adaptĂ©e. Les activitĂ©s administratives, communĂ©ment considĂ©rĂ©es comme sans dangers particuliers, sont toutefois peu voire pas concernĂ©es par ces mesures de protection spĂ©cifiques. Un projet-pilote a Ă©tĂ© mis en oeuvre au CHUV en 2019 pour les collaboratrices enceintes occupant un poste de travail administratif informatisĂ© habituellement ou ponctuellement dans le cadre d’un amĂ©nagement spĂ©cifique Ă  la grossesse. La grossesse peut engendrer une symptomatologie diverse (fatigue, jambes lourdes, lombalgie, etc.) pouvant gĂ©nĂ©rer des difficultĂ©s pour l’activitĂ© voire des pĂ©riodes d’incapacitĂ© de travail. Ce projet vise Ă  identifier les conditions de travail des collaboratrices enceintes aux postes de travail informatisĂ©s, ainsi que les actions d’amĂ©lioration et de maintien au poste durant la grossesse.Pregnancy is subject to legal provisions for the protection of pregnant women and their unborn children (OProMa, 2015; SECO, 2021). Swiss legislation provides that when the activity exposes a woman to risks for her pregnancy, the employer must offer her a suitable activity. However, administrative activities, commonly considered as not particularly dangerous, are hardly or not at all concerned by these specific protective measures. A pilot project has been implemented at the CHUV in 2019 for pregnant employees working at a computerized administrative workstation, either on a regular basis or on an ad hoc basis, as part of a specific pregnancy-related arrangement. Pregnancy can lead to various symptoms (fatigue, heavy legs, low back pain, etc.) that can generate difficulties for the activity or even periods of work incapacity. This project aims to identify the working conditions of pregnant employees at computerized workstations, and the actions to improve and maintain them at their jobs during pregnancy

    Host dispersal as the driver of parasite genetic structure: a paradigm lost?

    No full text
    International audienceUnderstanding traits influencing the distribution of genetic diversity has major ecological and evo-lutionary implications for host–parasite interactions. The genetic structure of parasites is expectedto conform to that of their hosts, because host dispersal is generally assumed to drive parasite dis-persal. Here, we used a meta-analysis to test this paradigm and determine whether traits relatedto host dispersal correctly predict the spatial co-distribution of host and parasite genetic variation.We compiled data from empirical work on local adaptation and host–parasite population geneticstructure from a wide range of taxonomic groups. We found that genetic differentiation was sig-nificantly lower in parasites than in hosts, suggesting that dispersal may often be higher for para-sites. A significant correlation in the pairwise genetic differentiation of hosts and parasites wasevident, but surprisingly weak. These results were largely explained by parasite reproductive mode,the proportion of free-living stages in the parasite life cycle and the geographical extent of thestudy; variables related to host dispersal were poor predictors of genetic patterns. Our results donot dispel the paradigm that parasite population genetic structure depends on host dispersal.Rather, we highlight that alternative factors are also important in driving the co-distribution ofhost and parasite genetic variation
    • 

    corecore