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h i g h l i g h t s

Reversible bioelectrodes were designed under polarization at ÿ0.20 V vs. SCE.

The bioelectrodes catalyzed both acetate oxidation and oxygen reduction.

Proton accumulation during anodic phase enhanced oxygen reduction by the biocathode.

Microbial community was dominated by Chloroflexi (49%).
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a b s t r a c t

Reversible bioelectrodes were designed by alternating acetate and oxygen supply. It was demonstrated

that the protons produced and accumulated inside the biofilm during the anodic phase greatly favored

the oxygen reduction reaction when the electrode was switched to become the biocathode. Protons accu-

mulation, which hindered the bioanode operation, thus became an advantage for the biocathode. The

bioanodes, formed from garden compost leachate under constant polarization at ÿ0.2 V vs. SCE, were

able to support long exposure to forced aeration, with only a slight alteration of their anodic efficiency.

They produced a current density of 16 ± 1.7 A/m2 for acetate oxidation and up to ÿ0.4 A/m2 for oxygen

reduction. Analysis of the microbial communities by 16S rRNA pyrosequencing revealed strong selection

of Chloroflexi (49 ± 1%), which was not observed for conventional bioanodes not exposed to oxygen. Chlo-

roflexi were found as the dominant phylum of electroactive biofilms for the first time.

1. Introduction

Microbial fuel cells (MFCs) are seen as a promising technology

for producing electricity directly from the oxidation of various

organic compounds that can be obtained at low cost and in

sustainable way. The most widely studied MFC architectures are

composed of a microbial anode associated with an abiotic oxy-

gen-reduction cathode. Unfortunately, abiotic air–cathodes still

give a rather low rate of oxygen reduction at the neutral pH values

that are required for the microbial anodes. This problem remains

an essential stumbling block in the development of large MFCs.

Up to now, the power density provided by MFCs equipped with

abiotic oxygen-reducing air cathodes has levelled off around

7W/m2 (Fan et al., 2008; Borole et al., 2011; Pocaznoi et al.,

2012b) for small-sized cells and decreases drastically as soon as

the system size increases (Santoro et al., 2013).

An appealing alternative solution would be to implement oxy-

gen-reduction microbial cathodes (Erable et al., 2012), which have

already proved their remarkable efficiency (Carbajosa et al., 2010).

However, a major drawback of associating a microbial anode with

a microbial cathode is that a pH gradient is established between

the anode and cathode compartments. The pH gradient is the result

of the production of protons at the anode as, for instance, in the

widely used oxidation of acetate:

CH3COO
ÿ þ 4H2O ! 2HCOÿ

3 þ 9Hþ þ 8eÿ ð1Þ

Coupled with the production of hydroxide ions by oxygen reduction

at the cathode:

2O2 þ 4H2Oþ 8eÿ ! 8OHÿ ð2Þ
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Ideally, electro-neutrality should be maintained by proton migra-

tion to the cathode compartment and hydroxide ion migration to

the anode compartment, but the diffusion of these ions is too slow

with respect to the other ions contained in the electrolytes (sodium,

potassium, chloride, acetate, phosphate and carbonate ionic species,

etc.) and proton migration plays only a minor role in charge-balanc-

ing. The pH gradient has been identified as a major source of losses

in the performance of microbial electrochemical systems (Harnisch

and Schröder, 2009). Membrane-less cells may provide part of the

solution by decreasing the hindrance to ionic transport but, in

return, they reduce electron recovery because of the direct aerobic

conversion of the organic fuel due to oxygen diffusion from the

cathode side (Rozendal et al., 2008). The use of a chemical buffer

can compensate for the deficiency of proton transport (Torres

et al., 2008), but it would be costly on a large scale. Freguia et al.

(2008) addressed the problem by proposing a loop configuration:

the effluent from the anode compartment was directed to the cath-

ode compartment. This operating mode largely solved the problem

of the pH gradient and it also improved the cathode performance

compared with an abiotic oxygen cathode. However, such a system

requires careful operation to avoid excessive chemical oxygen

demand (COD) entering the cathode, which would cause the growth

of aerobic heterotrophs and eventually restrict oxygen supply to the

cathode biofilm.

Cheng et al. (2010) proposed the use of a reversible bioelectrode

to avoid the problem of pH gradient and to improve the oxygen

reduction catalysis. They showed that it was possible for a biofilm

formed from activated sludge to catalyze both the anodic substrate

oxidation and the cathodic oxygen reduction. The proposed MFC

was operated in sequential phases by supplying acetate and oxy-

gen to the electrode alternately. This system offers the advantage

of avoiding growth of aerobic heterotrophic bacteria by separating

acetate and oxygen supplies. Moreover, the protons accumulated

during the anodic reaction do not need to be transported out of

the biofilm: they stimulate the subsequent cathodic reaction. The

concept of a reversible electrode has also been proposed by Strik

et al. (2010), who used a reversible electrode inoculated with

sludge to design a solar energy powered MFC. More recently, Li

et al. (2014) have described a dual bioelectrode MFC with periodic

reversal of polarity which results in a 36% increase in power den-

sity compared to that produced by the MFC without polarity

reversal.

Reversible microbial anodes may be a very good solution to

overcome the problem of pH gradient. The proton accumulation

that occurs during the anodic phase (Reaction 1) prepares favor-

able conditions for oxygen reduction during the cathodic phase

(Reaction 2). Despite their obvious advantages, studies of such

reversible microbial electrodes remain rare and, in particular, little

is known about the microbial composition of such intriguing

biofilms, which are able to ensure an anaerobic anode respiring

process and catalysis of oxygen reduction alternately. No compre-

hensive description of the microbial population of reversible elec-

troactive biofilms has been published so far.

The purpose of the present work was to assess the capability of

garden compost to form such reversible microbial electrodes. This

inoculum source has already led to very efficient microbial anodes

(Ketep et al., 2014) and has also been shown to contain bacterial

strains (members of Enterobacter and Pseudomonas genera) with

the ability to catalyze the electrochemical reduction of oxygen

(Parot et al., 2009). Consequently, this inoculum was a priori an

excellent candidate to form reversible microbial electrodes and

the results presented here confirm this hypothesis. The reversible

microbial electrodes formed here were then used for the in-depth

analysis of the microbial communities. From a practical point of

view, reversible bioelectrodes made from a soil inoculum may also

open up interesting possibilities for designing plant-MFCs (Strik

et al., 2008).

All experiments were performed in a 3-electrode set-up so as

to accurately characterize the electrode behavior. Actually, in

whole MFC set-ups, the potential of the working electrode vary

considerably, which adds a source of deviation between one

experimental device and another. Since the reversible bioelec-

trode concept was still in its infancy, it was chosen to work in

well-controlled analytical conditions here, in order to focus on

the electrode behavior, rather than repeating a proof of concept

with a whole MFC set-up, as already reported (Freguia et al.,

2008; Li et al., 2014). Following this line of thought, electrodes

with small surface areas were implemented in large volumes of

electrolyte to ensure experimental conditions that favored elec-

trode performance (Rimboud et al., 2014). The bioelectrodes were

formed under constant polarization at ÿ0.2 V vs. SCE. Their elec-

trochemical properties were characterized by cyclic voltammetry

and their microbial communities were analyzed by 16S rRNA

pyrosequencing.

2. Methods

2.1. Medium and inoculum: garden compost leachate

Commercial garden compost was used as a source of electroac-

tive microorganisms. 1.5 L of an aqueous solution containing

60 mM KCl was mixed with 1 L of garden compost and stirred for

24 h at room temperature. The mixture was then percolated

through a felt cloth to eliminate non-soluble macroparticles. The

final leachate was used as the electrolyte in the electrochemical

reactors after supplementation with 20 mM acetate. The initial

pH was 7.8 and the experiments were performed at 40 °C as

already optimized by Cercado-Quezada et al. (2010).

2.2. Electrochemical set-up

Experiments were performed in single compartment electro-

chemical reactors equipped with a 3-electrode system composed

of an 8 cm2 carbon cloth working electrode (PaxiTech, Grenoble)

connected with a platinum wire, a saturated calomel reference

electrode (SCE, Radiometer Analytical, +0.241 V vs. SHE) and an

8 cm2 Pt grid as auxiliary electrode. The working electrode was

located far (around 10 cm) from the auxiliary electrode but as close

as possible (around 0.5 cm) to the reference electrode. Each reactor

contained 600 mL of compost leachate. The working electrodes

were polarized atÿ0.20 V vs. SCE using a multi-channel VSP poten-

tiostat (Bio-Logic SA, software EC-Lab) and the current was

recorded every 10 min. Chronoamperometry was sometimes inter-

rupted to perform cyclic voltammetry at low scan rate (1 mV/s) in

the range ÿ0.6 to +0.3 V vs. SCE.

Coulombic efficiencies (CE) were calculated as the ratio of the

experimental electric charge passing through the system, obtained

by integrating the current over time, and the theoretical charge

calculated by assuming that 1 mol of acetate produces 8 mol of

electrons according to the oxidation reaction (1).

2.3. Development of the reversible bioelectrode

Two experiments were systematically carried out in parallel

(duplicates) to validate the reproducibility of the results. In the

running of the electrochemical reactors, periods of acetate supply

alternate with periods of oxygen supply. Acetate was added as a

pulse of 3 mL of 4 M sodium acetate solution. Oxygen was supplied

by forced aeration of the solution.



Step 1 (anode, day 1 to day 10) intended to form the microbial

anode with two successive pulses of 20 mM acetate; the second

pulse was added when the current had returned to zero because

of acetate depletion. The acetate concentration was monitored

by an enzymatic kit (K-ACETAK, Megazyme).

Step 2 (cathode, day 10 to day 24) corresponded to the intermit-

tent introduction of air. To confirm the oxygen dependence of

the cathodic current recorded on the microbial electrode, air

was not introduced continuously during this phase.

Step 3 (anode, day 24 to day 34) started with the addition of the

third 20 mM pulse of acetate.

Step 4 (cathode, day 34 to day 44) began after the acetate from

step 3 was totally depleted. Air was then introduced continu-

ously from day 34 to day 38. Aeration was turned off from

day 38 to day 42 and the reactor was left open to the air. Finally,

a new period of forced aeration was tested from day 42 to the

end (day 44).

2.4. Bacterial community analyses

The sample of garden compost leachate used to fill the reactors

was referred as T0-inoc. At the end of the experiments (day 44),

samples of 2 mL were collected from both reactors and referred

as Bulk 1 and Bulk 2. At the end of the experiments, the biofilms

were also collected from the electrodes by sonication in 2 mL of

distilled water (3 min at a power level of 80 W), and referred as

Biofilm 1 and 2. Cells were concentrated by centrifugation and

re-suspended in 500 lL of water. The DNA was extracted from

250 lL of each sample using the MOBIO PowerSoilÒ DNA Isolation

kit according to the manufacturer’s instructions.

DNA extractions were also performed with the PowerBiofilmÒ

DNA Isolation Kit (MOBIO) and pyrosequencing results confirmed

the consistency of the DNA extractions achieved with the 2 kits.

Both kits are able to extract good quality DNA in a reproducible

manner.

DNA concentrations and purity were checked by reading the

absorbance at 260 and 280 nm. Samples were sent to Research

and Testing Laboratory (RTLab – Texas, USA) where 454 pyro-

sequencing (Roche) was performed with primers 28F (50-GAG

TTT GAT YMT GGC TC-30) and 519R (50-GWA TTA CCG CGG CKG

CTG-30).

Microbial diversity screening and data processing were carried

out at Research and Testing Laboratory (Lubbock TX) using meth-

ods described previously (Dowd et al., 2008). Raw data were

screened and trimmed based on quality scores. Sequences shorter

than 250 bp were removed. Reads were classified into clusters

using USEARCH (Edgar, 2010). After sequencing, individual collec-

tions of sequences were depleted of chimeras using UCHIME

(Edgar et al., 2011).

Tentative identification of bacterial species was performed

using BLASTN in comparison with a curated high-quality 16S rRNA

gene database from the National Center for Biotechnology Informa-

tion (NCBI). The compiled data were used to determine the relative

percentages of bacteria for each individual sample.

Sequences >97% identity to known or well-characterized 16S

rRNA sequences (<3% divergence) were resolved at the species

level, between 95% and 97% at the genus level, between 90% and

95% at the family level, and between 80% and 90% at the order

level.

To assess the diversity of the microbial population in the bulks

and biofilms of the study, Simpson’s reciprocal indexes were calcu-

lated from the number of operational taxonomic units (OTUs)

assigned at the species level, according to the equation:

Simpson ¼ 1ÿ

PS
i¼1ni � ðniÿ 1Þ

N � ðN ÿ 1Þ
ð3Þ

where ni is the number of sequences belonging to the ith OTU (>97%

identity) and N is the total number of sequences that remain for the

sample after quality control. S is the number of OTUs.

3. Results and discussion

3.1. Bioanode formation and consequences of aerobic phase on the

bioanode performance

Electrochemically active biofilms were initially formed in the

presence of acetate on the surface of carbon cloth electrodes

immersed in garden compost leachate and polarized at ÿ0.20 V

vs. SCE. After 3 days of polarization, current densities started to

increase and reached a maximum of 7.6 ± 0.7 A/m2 and then felt

down again to zero because of acetate depletion (Fig. 1). On the

6th day, a second acetate injection (20 mM) caused the current

to increase to 19.3 ± 1.4 A/m2 in less than 2 days. To obtain a

mature bioanode, i.e., an anode giving fairly stable maximum cur-

rent densities, it is considered that 4 successive acetate additions

are necessary (Pocaznoi et al., 2012a). Only two acetate pulses

were applied here as the choice had been made not to allow the

biofilm to reach full maturity, in order to have the highest chance

of adapting a young biofilm to aerobic conditions. Forced aeration

was started in the reactor on the 10th day when the oxidative cur-

rent was close to zero. The first cathodic phase lasted for 14 days.

From day 24, aeration was stopped and acetate 20 mM was

added to the reactor. Oxidation current started to increase after

3 ± 1 days of latency. The lag-phase for this third pulse was longer

than the previous one, because some time was necessary for the

microorganisms to re-adapt from aerobic conditions to the

anode-respiring function. Then, current density reached a maxi-

mum of 16 ± 1.7 A/m2. After air exposure, the current density

was lower than could have been expected considering the current

density obtained with the second pulse (average of 19.3 A/m2). It

has been previously reported that the current density increased

with a third pulse of acetate, due to the biofilm growth (Cercado

et al., 2013).

The aerobic phase affected the bioanode performance slightly

by increasing the lag-time before current generation and by

decreasing the maximum current density a little. It may be specu-

lated that the microbial community was impacted by the death of

the strictly anaerobic bacteria. Nevertheless, the two-week aerobic

phase did not compromise the capacity of the biofilm to achieve

efficient acetate oxidation through anode respiration. To our
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Fig. 1. Chronoamperometry and pH values in reactor 1. Current density recorded on

carbon cloth electrode polarized at ÿ0.20 V vs. SCE in a compost leachate

supplemented with 20 mM of acetate. Letters A–D with dotted arrows correspond

to the voltammograms of Figs. 3 and 5. Plain arrows indicate 20 mM acetate pulse.



knowledge, this is the first time that such a reversible bioelectrode

has been designed using an inoculum coming from soil, and it pro-

vided good robust performance. Current density of 16 A/m2 was

reached for acetate oxidation, even after a considerable aerobic

period.

On Fig. 1 is also displayed measured pH in the solution. General

trend is alkalinization throughout the experiment (from 7.8 to 9.9).

According to (Pocaznoi et al., 2012b), this alkalinization is not

linked to the electrochemical reactions but was due to the sponta-

neous evolution of the non-buffered compost leachate. Momentary

acidification of the solution can be observed when acetate is

consumed.

Coulombic efficiency (CE) increased from 7.5% ± 1.5% to

32.5 ± 1.5% for the first and the second pulses, respectively. It

reached 35 ± 3% for the third acetate pulse. These values resulted

from the balance between the anode-respiring processes and the

consumption of acetate by metabolic pathways that did not use

the anode. Values lower than 50% indicated that much of the ace-

tate was oxidized by using alternative electron acceptors instead of

the electrode. As already discussed elsewhere (Cercado et al.,

2013), a rich medium such as garden compost contains alternative

dissolved electron acceptors (nitrate, sulfate, etc.), which are detri-

mental to CE. The dissolved oxygen was another alternative elec-

tron acceptor, as no particular care was taken to restore strict

anaerobic conditions in the reactors after the forced aerobic period.

Finally, the working electrode surface area (8 cm2) was small rela-

tive to the total volume of solution in the system (600 mL). Such a

design was chosen to favor the production of high currents, and it

succeeded in this objective, but it is known to be detrimental to

Coulombic efficiencies (Ketep et al., 2013; Rimboud et al., 2014).

3.2. Catalysis of oxygen reduction

After the third pulse of acetate at day 24, the electrodes were

again subjected to forced aeration on day 35. Fig. 2 presents the

evolution of the current density in reactor 1 during this second aer-

obic phase. It corresponds to a zoom-in of the Fig. 1 between day

34 and 44. When oxygen was provided, the electrodes immediately

acted as biocathodes, with reduction currents up to ÿ400 mA/m2

(Fig. 2 – zone 1), which are among the highest reported so far for

oxygen reduction in a medium fed with air at neutral pH (Erable

et al., 2012). The reduction current then decreased over time

(24 h) to reach a stable value around 71 mA/m2. This stable value

at an applied potential of ÿ0.20 V vs. SCE was slightly smaller than

values reported previously for oxygen-reducing biocathodes

formed in seawater: around 100 mA/m2 at 0.0 V vs. Ag/AgCl

(Dumas et al., 2008), and 250 mA/m2 at ÿ0.10 V vs. SCE (Bergel

et al., 2005). The biocathodes formed here produced fair, but not

exceptional, stable current densities (71 mA/m2) but they exhib-

ited great transient performance (400 mA/m2) just after having

been switched from anode to cathode operation. Alternating anode

and cathode phases drastically improved the efficiency of the

biocathode.

The high transient performance and its subsequent disappear-

ance could be explained by changes in the local pH in the biofilm.

During the anodic phase, the oxidation of acetate produced a con-

siderable amount of protons (Reaction 1), which accumulated

inside the biofilm (Torres et al., 2008). The biofilm thus had a local

pH significantly lower than that of the solution bulk when the elec-

trode started to be exposed to aeration. According to the diffusion

model of Torres et al. (2008), considering the current density of

16 A/m2 and the measured pH in the solution of 9.1 just before

the exposition to oxygen (day 34), and considering a biofilm of

50 lm in thickness, the biofilm internal pH would be 3.1. As indi-

cated in the article (Torres et al., 2008), this is only a rough evalu-

ation of the possible minimal pH inside the biofilm. Such a low pH

would severely hinder bacterial growth, but the internal pH of the

biofilm is surely damped by the buffer capacity of the medium.

This theoretical very minimal value has only a qualitative meaning

by indicating the possible drastic acidification of the biofilm during

the anodic phase.

The low pH that was reached at the end of the anodic phase

favored the thermodynamics of oxygen reduction (Reaction 2),

which explained the high current density obtained at the begin-

ning of the biocathode phase. Then, the production of hydroxide

ions due to oxygen reduction slowly balanced out the protons

accumulated inside the biofilm and, finally, resulted in an excess

of hydroxide ions that have to diffuse out of the biofilm when

the biocathode reached its final steady state. The slow decrease

of the reduction current observed during day 35 would correspond

to the slow pH increase inside the biofilm from a status of proton

excess (favorable to oxygen reduction) to a status of hydroxide ions

excess (detrimental to oxygen reduction). This transient state

lasted 24 h (Fig. 2 – zone 1) before the current reached a stable

value of 0.071 A/m2 (day 36).

From day 38 to day 42, aeration was switched off and the reac-

tors were left open to the air. The measured dissolved oxygen con-

centration corresponded to around 100% air saturation (6.5 mg/L at

40 °C) during the first phase of forced aeration, but it fell to 42 ± 1%

when the forced aeration was stopped and the reactors were sim-

ply open to the air. The stable current density decreased to 27 mA/

m2 (Fig. 2), i.e., in a proportion (38%) similar to that of the oxygen

concentration. It was thus confirmed that the current density was

directly linked to the dissolved oxygen concentration.

Finally, when the forced aeration was turned on again on day 42

(Fig. 2 – zone 2), the current density stabilized directly to the pre-

vious steady state value (71 mA/m2). No transient high current was

observed as had been the case on day 35 when the forced aeration

was established just after the bioanode phase. When there was no

preceding anode phase, and consequently no proton accumulation

before the forced aeration was established, no high transient cur-

rent was observed. This last event confirmed the beneficial effect

of anode–cathode sequencing and it supports the theory that pro-

ton accumulation is the source of cathodic current enhancement.

The electrocatalytic properties of the biocathodes were charac-

terized by cyclic voltammetries (Fig. 3). The voltammograms per-

formed initially (A) with the clean electrode at the initial pH of

the medium (pH 7.8) showed a reproducible reduction wave start-

ing at around ÿ0.30 V vs. SCE. Under forced aeration, the general
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shape of the reduction wave was not modified (E), the starting

potential was approximately identical, but currents densities were

increased. These current–potential curves corresponded to the abi-

otic electrochemical reduction of dissolved oxygen on the clean

carbon cloth electrode.

After 43 days of biofilm formation, the biocathode produced an

oxygen reduction wave starting around ÿ0.15 V vs. SCE, and with a

diffusion-limited current plateau of 530 mA/m2 from ÿ0.30 V vs.

SCE. With the forced aeration, the limiting-current disappeared

and current densities reached values as high as 1260 mA/m2 at

ÿ0.30 V vs. SCE. The current was consequently limited by the con-

centration of dissolved oxygen and/or mass transfer of oxygen to

the electrode surface (Fig. 3).

The voltammograms of the biocathode presented in Fig. 3 were

recorded when the medium had pH values higher than 9, while the

initial abiotic controls were performed with the initial pH value of

7.8. From a thermodynamic point of view, the pH value was detri-

mental to the biocathodes in comparison to the abiotic controls.

Nevertheless, despite the possible detrimental effect of pH, the bio-

cathodes produced more effective oxygen-reduction kinetics than

the clean electrodes: reduction waves started at higher potential

and current densities were significantly higher. Moreover, voltam-

mograms were recorded at days 23 and 43, which means several

days after being switched to cathodic phase. The biocathodes were

consequently in a stationary state and did not benefit from the

enhancing effect of biofilm acidification during the anodic phase.

These voltammograms represented the stationary characteristics

of the biocathodes apart for the biofilm acidification impact. It

can be concluded that acidification during the anodic phase clearly

enhanced the biocathode properties, but was far from being the

sole cause of the entire catalytic effect. The biocathodes catalyze

oxygen reduction and the biofilm acidification due to the anodic

phase had a boost effect.

To evaluate the sole effect of pH on cathodic current, abiotic

cyclic voltammetries were run with clean carbon cloth electrodes

in the same medium at different pH: 5.3; 7.8 and 9.9 without

(Fig. 4a) and with forced aeration (Fig. 4b). The pH of 5.3 was cho-

sen to be reasonably representative of the internal biofilm acidifi-

cation, without inducing to important damages to the microbial

community. Previous experiments showed that the bioanodes lost

drastically their performance when the pH of the medium was

decreased below 5. At the potential of ÿ0.20 V vs. SCE, cathodic

current increased from 13 mA/m2 to 66 mA/m2 when pH decreases

from 9.9 to 5.3. Forced aeration into the reactor did not signifi-

cantly modify the current–potential characteristics. In these condi-

tions and in this potential range, oxygen reduction was controlled

by the electron transfer kinetics and not by oxygen transfer.

These abiotic controls confirmed that the effect of pH on abiotic

reduction of oxygen was limited. At ÿ0.20 V vs. SCE the abiotic

reduction of oxygen on carbon cloth immerged in compost leach-

ate was too slow and fully controlled by the electron transfer kinet-

ics to be highly sensitive to the thermodynamic conditions. The

impact of acidification during the anodic phase had a so important

effect (enhancing current density from 70 to 400 mA/m2) because

of the biotic character of the cathode.

The capability of the same biofilm to catalyze both acetate oxi-

dation and oxygen reduction is illustrated in Fig. 5 by overlaying a

CV at the end of the anodic phase (D) on a CV at the end of a catho-

dic phase (C). In the range of potential values from ÿ0.1 to ÿ0.5 V

vs. SCE, depending on whether the electrode was provided with
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acetate or oxygen, the bioelectrode was able to achieve either the

oxidation of acetate or the reduction of oxygen. At the end of the

anodic phase, the CV was characteristic of a very efficient bioanode

with a highly dominant redox couple centred at ÿ0.44 V vs. ECS,

which is in the same range of potential as the redox couples deter-

mined with different bioanodes made from Geobacter sulfurredu-

cens pure culture, for instance (Fricke et al., 2008; Zhu et al.,

2012). In return, at the end of the reduction phase, the electrode

took on the conventional characteristics of an oxygen-reducing

cathode.

3.3. Microbial community analyses

After trimming, sorting, and quality control, a total of 45569

sequences with an average read length of 487 nucleotides were

used in downstream analysis. 25% of these sequences represented

hits from the blast results that fell below 77% identity, which is not

sufficient to have confidence in the determination of an organism.

34066 sequences remained and were clustered into 623 opera-

tional taxonomic units (OTUs) at 3% distance threshold. They were

used in the calculations of the diversity index for each sample.

The number of organizational taxonomic units (OTUs) (Table 1)

showed that the microbial communities composing the biofilms

were less rich than the communities of the initial medium and

the bulks at the end of the experiments (43 days chronoamperom-

etry). The Simpson Indexes confirmed the lower diversity of the

biofilm microbial communities, where the average value was

0.85 compared with 0.91 for the bulks and 0.94 for the initial gar-

den compost leachate. These results indicated a selection of some

microbial groups on the electrodes by the applied potential and/

or by the cultivation conditions.

Table 2 gives the microbial communities (distribution in per-

centage of total sequences) at the phylum and class levels for the

bulks and the biofilms of the two reactors (duplicates) at the end

of experiments. In the initial garden compost leachate (T0-inoc),

the dominant phyla were Proteobacteria (55%, including a majority

of Gammaproteobacteria), Bacteroidetes (24%) and Firmicutes

(13%). The microbial communities of the electrode biofilms were

both drastically dominated by Chloroflexi (49 ± 1%) whereas

enrichment in Chloroflexi was visible to a lesser extent in the bulks

and may have been due to detachment of the cells from the biofilm

into the solution.

At the genus level (Fig. 6) the inoculum was dominated by

Acinetobacter sp. (34%) from the class of Gammaproteobacteria

and Pedobacter sp. (13%) belonging to the class of Bacteroidetes.

At the end of the experiments, microbial communities had radi-

cally changed and these genera represented less than 1% in bio-

films and bulks. The biofilm communities were dominated by

Chloroflexus sp. (33% and 38% for Biofilm1 and Biofim2 respec-

tively). Longilinea sp., Bellilinea sp. and Anaerolinea sp., all belonging

to the phylum Chloroflexi, together made up 14.7% of the popula-

tion for Biofilm 1 and 10.8% for Biofilm 2.

Azoarcus sp. (34%) from the class of Betaproteobacteria domi-

nated the microbial community of the bulk 1, while bulk 2 pre-

sented a more diverse microbial community, as indicated by the

relatively high Simpson index (Table 1).

Bioanodes that were formed under identical conditions (garden

compost leachate as inoculum, acetate as substrate, polarization at

ÿ0.2 V vs. SCE), but in anaerobic conditions (no aeration phase) led

to microbial communities dominated by Proteobacteria with

73% ± 2% at the electrode and 51% ± 1% in the bulks. Among Prote-

obacteria, an enrichment of the biofilms in Deltaproteobacteria

was noticeable. Microbial 16S rRNA pyrosequencing gave a relative

abundance of 27% ± 4% of Deltaproteobacteria at the anode

whereas it was only 1.5% ± 0.5% in the bulks. Chloroflexi composed

less than 0.3% of these populations (data to be published). This kind

of microbial composition was fully consistent with the analysis

commonly reported for bioanodes, with dominance of Proteobac-

teria (Logan and Regan, 2006).

It can be concluded that the reversible anode–cathode phases

led to the selection of a specific microbial community dominated

by Chloroflexi. This phylum has not been frequently found in bio-

electrochemical systems. Chloroflexi has previously been identified

on the anode of an MFC powered by rhizodeposits of living rice

plants, but it represented only 6% of all clones (Schamphelaire

et al., 2010). Chloroflexi have also been found enriched on the

anode of a cellulose-fed MFC (Ishii et al., 2008). The high

Table 1

Diversity indexes for the initial garden compost leachate, the bulks and biofilms.

Sample OTUs number Simpson

T0-inoc 263 0.94

Bulk 1 370 0.88

Bulk 2 274 0.95

Biofilm 1 242 0.88

Biofilm 2 195 0.83

Table 2

Microbial community (distribution in percentage of total sequences) at the class level. T0-inoc is the initial medium. 1 and 2 indicate two reactors run in parallel during 43 days of

polarization at ÿ0.20 V vs. SCE.

Phylum Chloroflexi (%) Proteobacteria (%) Firmicutes (%) Bacteroidetes (%) Others

Class Chloroflexi (class) Anaerolineae a b c d

T0-inoc 1 1 11 5 38 1 13 24 5

Bulk 1 14 5 11 49 1 4 4 4 7

Bulk 2 18 12 11 5 4 4 13 10 23

Biofilm 1 33 15 8 8 3 3 10 12 7

Biofilm 2 39 11 8 16 1 11 1 5 8
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percentages found here in both duplicates indicate that Chloroflexi

may be a characteristic of reversible bioanodes.

Chloroflexi are known as green non-sulfur bacteria. They are

generally photoheterotrophs and can use various sugars and

organic acids as electron donors. This metabolism would give them

the possibility to develop during anodic phases when acetate is

available, using the electrode as electron acceptor. Moreover,

Chloroflexi are facultative aerobic, which means that they can

develop during the biocathode phase and they have the enzymatic

equipment to reduce oxygen. Such a flexible metabolism is a

selective advantage for Chloroflexi over other microbial strains,

and certainly explains their dominance at the electrodes.

Chloroflexus sp. is a filamentous organism abundant in waste-

water treatment plant (Björnsson et al., 2002). It can be speculated

that, given its filamentous aspect, Chloroflexus species might play a

role in electron transport. A similar phenomenon has been

described by Pfeffer et al. (2012) for members of the Desulfobulb-

aceae family. This study showed that long-distance electron trans-

port from sulfide to oxygen was possible in sediment, mediated by

the micro-cables that form the long filamentous bacteria. Never-

theless, to the best of our knowledge there is no proof of the pos-

sible electroactivity of Chloroflexi in the literature so far. One of the

main conclusions of the present work is that the possible electro-

activity of Chloroflexi should now be considered as a major scien-

tific question, because they may represent an essential pillar in the

design of very efficient reversible bioelectrodes.

4. Conclusion

Reversible bioelectrodes are an appealing approach boosting

the performance of MFCs by using the accumulation of protons,

which limits the bioanode operation, as an advantage to favor

the biocathode operation. The success of this strategy was demon-

strated here with bioanodes formed from garden compost. The

microbial community that composed the reversible bioelectrodes

was dominated by Chloroflexi, a class of bacteria known as fila-

mentous green non-sulfur bacteria, facultative aerobic, which

now deserves further fundamental investigation as a possible can-

didate for the design of reversible bioelectrodes with pure culture.
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