97 research outputs found

    Two-Color Surface Photometry of Brightest Cluster Members

    Get PDF
    The Gunn g, r and i CCD images of a representative sample of 17 Brightest Cluster Galaxies (BCM) have been analyzed in order to derive surface brightness and color profiles, together with geometrical parameters like eccentricity and position angle. The sample includes both X-ray and optically selected clusters, ranging in redshift from z=0.049 to z=0.191. We find that BCMs are substantially well described by de Vaucouleurs' law out to radii of ∼60−80\sim 60-80 kpc, and that color gradients are generally absent. Only in two cases we find a surface brightness excess with respect to the r1/4r^{1/4} law, which for A150 is coupled with a change in the g−rg-r color. The rest frame colors of BCMs do not show any intrinsic dispersion. By parametrizing the environment with the local galaxy number density, we find that it is correlated with the BCM extension, i.e. BCMs with larger effective radii are found in denser environments.Comment: accepted for publication in Aj, May 1997, 25 pages LaTeX format (aas style files), including tables, plus 6 figures (postscript

    Can dark energy viscosity be detected with the Euclid survey?

    Full text link
    Recent work has demonstrated that it is important to constrain the dynamics of cosmological perturbations, in addition to the evolution of the background, if we want to distinguish among different models of the dark sector. Especially the anisotropic stress of the (possibly effective) dark energy fluid has been shown to be an important discriminator between modified gravity and dark energy models. In this paper we use approximate analytical solutions of the perturbation equations in the presence of viscosity to study how the anisotropic stress affects the weak lensing and galaxy power spectrum. We then forecast how sensitive the photometric and spectroscopic Euclid surveys will be to both the speed of sound and the viscosity of our effective dark energy fluid when using weak lensing tomography and the galaxy power spectrum. We find that Euclid alone can only constrain models with a very small speed of sound and viscosity, while it will need the help of other observables in order to give interesting constraints on models with a sound speed close to one. This conclusion is also supported by the expected Bayes factor between modelsD. S. acknowledges support from the JAEDoc program with Grant No. JAEDoc074 and the Spanish MICINN under Project No. AYA2009-13936-C06-06. D. S. also acknowledges financial support from the Madrid Regional Government (CAM) under the program HEPHACOS P-ESP-00346, Consolider-Ingenio 2010 PAU (CSD2007-00060), as well as the European Union Marie Curie Network ‘‘UniverseNet’’ under Contract No. MRTN-CT-2006-035863. E. M. was supported by the Spanish MICINNs Juan de la Cierva programme (Grant No. JCI-2010-08112), by CICYT through Project No. FPA-2009 09017, by the Community of Madrid through the project HEPHACOS (Grant No. S2009/ESP- 1473) under Grant No. P-ESP-00346 and by the European Union FP7 ITN INVISIBLES (Marie Curie Actions, PITNGA-2011-289442). M. K. acknowledges funding by the Swiss NS

    F-VIPGI: a new adapted version of VIPGI for FORS2 spectroscopy. Application to a sample of 16 X-ray selected galaxy clusters at 0.6 < z < 1.2

    Full text link
    The goal of this paper is twofold. Firstly, we present F-VIPGI, a new version of the VIMOS Interactive Pipeline and Graphical Interface (VIPGI) adapted to handle FORS2 spectroscopic data. Secondly, we investigate the spectro-photometric properties of a sample of galaxies residing in distant X-ray selected galaxy clusters, the optical spectra of which were reduced with this new pipeline. We provide basic technical information about the innovations of the new software and, as a demonstration of the capabilities of the new pipeline, we show results obtained for 16 distant (0.65 < z < 1.25) X-ray luminous galaxy clusters selected within the XMM-Newton Distant Cluster Project. We performed a spectral indices analysis of the extracted optical spectra of their members, based on which we created a library of composite high signal-to-noise ratio spectra representative of passive and star-forming galaxies residing in distant galaxy clusters. The spectroscopic templates are provided to the community in electronic form. By comparing the spectro-photometric properties of our templates with the local and distant galaxy population residing in different environments, we find that passive galaxies in clusters appear to be well evolved already at z = 0.8 and even more so than the field galaxies at similar redshift. Even though these findings would point toward a significant acceleration of galaxy evolution in densest environments, we cannot exclude the importance of the mass as the main evolutionary driving element either. The latter effect may indeed be justified by the similarity of our composite passive spectrum with the luminous red galaxies template at intermediate redshift.Comment: 15 pages, 15 figures, in press on Astronomy and Astrophysic

    Large-scale retrospective relative spectro-photometric self-calibration in space

    Get PDF
    We consider the application of relative self-calibration using overlap regions to spectroscopic galaxy surveys that use slit-less spectroscopy. This method is based on that developed for the SDSS by Padmanabhan at al. (2008) in that we consider jointly fitting and marginalising over calibrator brightness, rather than treating these as free parameters. However, we separate the calibration of the detector-to-detector from the full-focal-plane exposure-to-exposure calibration. To demonstrate how the calibration procedure will work, we simulate the procedure for a potential implementation of the spectroscopic component of the wide Euclid survey. We study the change of coverage and the determination of relative multiplicative errors in flux measurements for different dithering configurations. We use the new method to study the case where the flat-field across each exposure or detector is measured precisely and only exposure-to-exposure or detector-to-detector variation in the flux error remains. We consider several base dither patterns and find that they strongly influence the ability to calibrate, using this methodology. To enable self-calibration, it is important that the survey strategy connects different observations with at least a minimum amount of overlap, and we propose an "S"-pattern for dithering that fulfills this requirement. The final survey strategy adopted by Euclid will have to optimise for a number of different science goals and requirements. The large-scale calibration of the spectroscopic galaxy survey is clearly cosmologically crucial, but is not the only one.Comment: 23 pages, 19 figures, Accepted for publication in MNRAS, 201

    Problem with MODS data in the blue channel

    Get PDF
    During the 2013 June Italian run, a MODS blue proposal (MOS) has been observed (ID 31) and reduced. The PI is interested in measuring absorption features of high redshift objects. These feature are expected to be observed in the bluest region of the spectra

    Test on LUCIFER calibrator science frames

    Get PDF
    In order to find the best way to combine together telluric spectra and compute a sensitivity function, we observed different scientific frames of telluric stars. During this exploration we detected strange changes in spectra obtained from consecutive frame, this variability prevents us to compute a suitable sensitivity function, so we need to investigate better these frames
    • …
    corecore