114 research outputs found

    NOVEL DIGITAL LOCK SYSTEM

    Get PDF
    In this paper we have proposed a new digital lock model which is primarily designed for low cost intermediate security purpose. Even though there are digital locks available this one is designed keeping the common man in mind. It will be the first digital locking system that would be available at a price less than 700 rupees. The recent increase in burglary levels proves the fact that the lever locking system is no more reliable and effective, but on the other hand the present digital locks are around 3000 rupees making it over priced. So this clearly shows the need for an intermediate effective digital locking system. Our novel digital locking system is aimed exactly to solve the above stated problem. Our model is an outcome of embedded system and can works using an 8051 microcontroller interfaced with a 16*2 lcd to perform logical operations. The input is given by the user using 3*3 matrixes key padded system. The locking system consist of a power lock which is widely used in automobiles, it primarily consist of an dc motor which on rotating moves the lever back and forth depending on the direction of rotation. The interrupt pins are used to clear the buzzer which is connected to port 3 pins which thereby notifies the user immediately in case of theft or burglary

    EXPERIMENTAL INVESTIGATION ON TRIBOLOGICAL CHARACTERISTICS OF SILICON NITRIDE REINFORCED ALUMINIUM METAL MATRIX COMPOSITES

    Get PDF
    Aluminium alloy (LM25) reinforced with silicon nitride was fabricated by liquid metallurgy route. The fabricated composite was investigated for dry sliding wear behaviour by conducting experiments using pin-on-disc tribometer. Set of experiments were planned using Taguchi’s technique and data analysis was carried out using L27 orthogonal array. Analysis of Variance (ANOVA) technique was used to determine the significance of parameter with respect to wear rate. Signal-to-Noise ratio was employed to detect the most and least influential parameter as well as their level of influence. ‘Smaller the wear’ characteristic was chosen for the analysis of dry sliding wear. Results implied that, the load has the primary effect on the wear succeeded by the effect of sliding velocity and sliding distance. Scanning Electronic Microscopic studies were carried out on worn surfaces to understand the wear mechanism.Tribological results indicated that LM25 aluminium alloy could be better utilized as a material for piston, rotor and bearings for long life in low speed applications

    Smart Cultivation

    Get PDF
    The proposed project is about a serious issue in today’s world that is insufficient food production, which prevails in many parts of the world. Farming plays an important role in food production and economic development in India and in the world as a whole. Getting high yield from the available land depends on fertility, moisture content of the soil and other climatic factors. The proposed work helps to overcome this problem, which aims at developing an automatic fertilizer-irrigation control and management system. It improves soil porosity and nutrient content through periodic application of required amount of fertilizers and water for crop’s growth. This will metabolize the soil texture, give nutrients to the crops, build plant tissues as well as increase the rate of crop productivity. The implementation of the work is achieved by sensors which include potassium sensor, nitrogen sensor, humidity sensor and temperature sensor, applying Intelligence technique by using Arduino nano to control the valve of the irrigation system. The system automatically applies soluble agrochemical fertilizers and water based on plant needs, as a result of which productivity is increased to considerable amount to meet out increasing needs

    Smart Cultivation

    Get PDF
    The proposed project is about a serious issue in today’s world that is insufficient food production, which prevails in many parts of the world. Farming plays an important role in food production and economic development in India and in the world as a whole. Getting high yield from the available land depends on fertility, moisture content of the soil and other climatic factors. The proposed work helps to overcome this problem, which aims at developing an automatic fertilizer-irrigation control and management system. It improves soil porosity and nutrient content through periodic application of required amount of fertilizers and water for crop’s growth. This will metabolize the soil texture, give nutrients to the crops, build plant tissues as well as increase the rate of crop productivity. The implementation of the work is achieved by sensors which include potassium sensor, nitrogen sensor, humidity sensor and temperature sensor, applying Intelligence technique by using Arduino nano to control the valve of the irrigation system. The system automatically applies soluble agrochemical fertilizers and water based on plant needs, as a result of which productivity is increased to considerable amount to meet out increasing needs

    Soft-chemical routes to synthesis of solid oxide materials

    Get PDF
    We describe three different families of metal oxides, viz., (i) protonated layered perovskites, (ii) framework phosphates of NASICON and KTiOPO4 (KTP) structures and (iii) layered and three-dimensional oxides in the H-V-W-O system, synthesized by 'soft-chemical' routes involving respectively ion-exchange, redox deintercalation and acid-leaching from appropriate parent oxides. Oxides of the first family, HyA2B3O10(A = La/Ca; B = Ti/Nb), exhibit variable Bronsted acidity and intercalation behaviour that depend on the interlayer structure. V2(PO4)3 prepared by oxidative deintercalation from Na3 V2(PO4)3 is a new host material exhibiting reductive insertion of lithium/hydrogen, while K0.5Nb0.5 M0.5OPO4 (M = Ti, V) are novel KTP-like materials exhibiting second harmonic generation of 1064nm radiation. HxVxW1-xO3 for x = 0·125 and 0·33 possessing α-MoO3 and hexagonal WO3 structures, prepared by acid-leaching of LiVWO6, represent functionalized oxide materials exhibiting redox and acid-base intercalation reactivity

    Synthesis, characterization and biological activity of novel Cu(II) complexes of 6-methyl-2-oxo-1,2-dihydroquinoline-3-carbaldehy de-4N-substituted thiosemicarbazones

    Get PDF
    Three new 6-methyl-2-oxo-1,2-dihydroquinoline-3-carbaldehyde-thiosemicarbazones-N-4-substituted pro-ligands and their Cu(II) complexes (1, -NH2; 2, -NHMe; 3, -NHEt) have been prepared and characterized. In both the X-ray structures of 1 and 3, two crystallographically independent complex molecules were found that differ either in the nature of weakly metal-binding species (water in 1a and nitrate in 1b) or in the co-ligand (water in 3a and methanol in 3b). Electron Paramagnetic Resonance (EPR) measurements carried out on complexes 1 and 3 confirmed the presence of such different species in the solution. The electrochemical behavior of the pro-ligands and of the complexes was investigated, as well as their biological activity. Complexes 2 and 3 exhibited a high cytotoxicity against human tumor cells and 3D spheroids derived from solid tumors, related to the high cellular uptake. Complexes 2 and 3 also showed a high selectivity towards cancerous cell lines with respect to non-cancerous cell lines and were able to circumvent cisplatin resistance. Via the Transmission Electron Microscopy (TEM) imaging technique, preliminary insights into the biological activity of copper complexes were obtained

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment
    • …
    corecore