1,682 research outputs found
On the contact values of the density profiles in an electric double layer using density functional theory
A recently proposed local second contact value theorem [Henderson D., Boda
D., J. Electroanal. Chem., 2005, 582, 16] for the charge profile of an electric
double layer is used in conjunction with the existing Monte Carlo data from the
literature to assess the contact behavior of the electrode-ion distributions
predicted by the density functional theory. The results for the contact values
of the co- and counterion distributions and their product are obtained for the
symmetric valency, restricted primitive model planar double layer for a range
of electrolyte concentrations and temperatures. Overall, the theoretical
results satisfy the second contact value theorem reasonably well, the agreement
with the simulations being semi-quantitative or better. The product of the co-
and counterion contact values as a function of the electrode surface charge
density is qualitative with the simulations with increasing deviations at
higher concentrations.Comment: 10 pages, 8 figure
Climate change and its impacts on older adults’ health in Kazakhstan
There has been growing concern over climate change and its impacts on many aspects of human society, particularly on health. Climate change may affect health in a wide range of forms: increased floods and droughts, increased frequency and intensity of heat waves, changes in the distribution of vector-borne diseases and effects on the risk of disasters and malnutrition (Haines et al 2006b). So far, little is known about climate change and its impact on older adults' health in Central Asia, particularly in Khazakhstan, where a downturn of life expectancy, has been prevalent. The objective of this paper is to examine the impacts of climate change on older adults’ health in Kazakhstan. Based on the literature review and empirical evidence, this study concludes that climate change largely affects older adults’ health in Kazakhstan. This study emphasizes that older adults are becoming increasingly aware of the climate-change risks and its impacts on human health. Older adults are matured human capital of any society and can be utilized to address the climate-related health consequences in the twenty-first century. It is hoped that the findings of this study will have enormous policy implications
The Impact of Interference on GNSS Receiver Observables – A Running Digital Sum Based Simple Jammer Detector
A GNSS-based navigation system relies on externally received information via a space-based Radio Frequency (RF) link. This poses susceptibility to RF Interference (RFI) and may initiate failure states ranging from degraded navigation accuracy to a complete signal loss condition. To guarantee the integrity of the received GNSS signal, the receiver should either be able to function in the presence of RFI without generating misleading information (i.e., offering a navigation solution within an accuracy limit), or the receiver must detect RFI so that some other means could be used as a countermeasure in order to ensure robust and accurate navigation. Therefore, it is of utmost importance to identify an interference occurrence and not to confuse it with other signal conditions, for example, indoor or deep urban canyon, both of which have somewhat similar impact on the navigation performance. Hence, in this paper, the objective is to investigate the effect of interference on different GNSS receiver observables in two different environments: i. an interference scenario with an inexpensive car jammer, and ii. an outdoor-indoor scenario without any intentional interference. The investigated observables include the Automatic Gain Control (AGC) measurements, the digitized IF (Intermediate Frequency) signal levels, the Delay Locked Loop and the Phase Locked Loop discriminator variances, and the Carrier-to-noise density ratio (C/N0) measurements. The behavioral pattern of these receiver observables is perceived in these two different scenarios in order to comprehend which of those observables would be able to separate an interference situation from an indoor scenario, since in both the cases, the resulting positioning accuracy and/or availability are affected somewhat similarly. A new Running Digital Sum (RDS) -based interference detection method is also proposed herein that can be used as an alternate to AGC-based interference detection. It is shown in this paper that it is not at all wise to consider certain receiver observables for interference detection (i.e., C/N0); rather it is beneficial to utilize certain specific observables, such as the RDS of raw digitized signal levels or the AGC-based observables that can uniquely identify a critical malicious interference occurrence
Analysis of Multipath Mitigation Techniques with Land Mobile Satellite Channel Model
Multipath is undesirable for Global Navigation Satellite System (GNSS) receivers, since the reception of multipath can create a significant distortion to the shape of the correlation function leading to an error in the receivers’ position estimate. Many multipath mitigation techniques exist in the literature to deal with the multipath propagation problem in the context of GNSS. The multipath studies in the literature are often based on optimistic assumptions, for example, assuming a static two-path channel or a fading channel with a Rayleigh or a Nakagami distribution. But, in reality, there are a lot of channel modeling issues, for example, satellite-to-user geometry, variable number of paths, variable path delays and gains, Non Line-Of-Sight (NLOS) path condition, receiver movements, etc. that are kept out of consideration when analyzing the performance of these techniques. Therefore, this is of utmost importance to analyze the performance of different multipath mitigation techniques in some realistic measurement-based channel models, for example, the Land Multipath is undesirable for Global Navigation Satellite System (GNSS) receivers, since the reception of multipath can create a significant distortion to the shape of the correlation function leading to an error in the receivers’ position estimate. Many multipath mitigation techniques exist in the literature to deal with the multipath propagation problem in the context of GNSS. The multipath studies in the literature are often based on optimistic assumptions, for example, assuming a static two-path channel or a fading channel with a Rayleigh or a Nakagami distribution. But, in reality, there are a lot of channel modeling issues, for example, satellite-to-user geometry, variable number of paths, variable path delays and gains, Non Line-Of-Sight (NLOS) path condition, receiver movements, etc. that are kept out of consideration when analyzing the performance of these techniques. Therefore, this is of utmost importance to analyze the performance of different multipath mitigation techniques in some realistic measurement-based channel models, for example, the Land Mobile Satellite (LMS) channel model [1]-[4], developed at the German Aerospace Center (DLR). The DLR LMS channel model is widely used for simulating the positioning accuracy of mobile satellite navigation receivers in urban outdoor scenarios. The main objective of this paper is to present a comprehensive analysis of some of the most promising techniques with the DLR LMS channel model in varying multipath scenarios. Four multipath mitigation techniques are chosen herein for performance comparison, namely, the narrow Early-Minus-Late (nEML), the High Resolution Correlator, the C/N0-based two stage delay tracking technique, and the Reduced Search Space Maximum Likelihood (RSSML) delay estimator. The first two techniques are the most popular and traditional ones used in nowadays GNSS receivers, whereas the later two techniques are comparatively new and are advanced techniques, recently proposed by the authors. In addition, the implementation of the RSSML is optimized here for a narrow-bandwidth receiver configuration in the sense that it now requires a significantly less number of correlators and memory than its original implementation. The simulation results show that the reduced-complexity RSSML achieves the best multipath mitigation performance in moderate-to-good carrier-to-noise density ratio with the DLR LMS channel model in varying multipath scenarios
Influence of anisotropic ion shape, asymmetric valency, and electrolyte concentration on structural and thermodynamic properties of an electric double layer
Grand canonical Monte Carlo simulation results are reported for an electric
double layer modelled by a planar charged hard wall, anisotropic shape cations,
and spherical anions at different electrolyte concentrations and asymmetric
valencies. The cations consist of two tangentially tethered hard spheres of the
same diameter, . One sphere is charged while the other is neutral. Spherical
anions are charged hard spheres of diameter . The ion valency asymmetry 1:2
and 2:1 is considered, with the ions being immersed in a solvent mimicked by a
continuum dielectric medium at standard temperature. The simulations are
carried out for the following electrolyte concentrations: 0.1, 1.0 and 2.0 M.
Profiles of the electrode-ion, electrode-neutral sphere singlet distributions,
the average orientation of dimers, and the mean electrostatic potential are
calculated for a given electrode surface charge, , while the contact
electrode potential and the differential capacitance are presented for varying
electrode charge. With an increasing electrolyte concentration, the shape of
differential capacitance curve changes from that with a minimum surrounded by
maxima into that of a distorted single maximum. For a 2:1 electrolyte, the
maximum is located at a small negative value while for 1:2, at a small
positive value.Comment: 10 pages, 6 figure
Double layer for hard spheres with an off-center charge
Simulations for the density and potential profiles of the ions in the planar
electrical double layer of a model electrolyte or an ionic liquid are reported.
The ions of a real electrolyte or an ionic liquid are usually not spheres; in
ionic liquids, the cations are molecular ions. In the past, this asymmetry has
been modelled by considering spheres that are asymmetric in size and/or valence
(viz., the primitive model) or by dimer cations that are formed by tangentially
touching spheres. In this paper we consider spherical ions that are asymmetric
in size and mimic the asymmetrical shape through an off-center charge that is
located away from the center of the cation spheres, while the anion charge is
at the center of anion spheres. The various singlet density and potential
profiles are compared to (i) the dimer situation, that is, the constituent
spheres of the dimer cation are tangentially tethered, and (ii) the standard
primitive model. The results reveal the double layer structure to be
substantially impacted especially when the cation is the counterion. As well as
being of intrinsic interest, this off-center charge model may be useful for
theories that consider spherical models and introduce the off-center charge as
a perturbation.Comment: 11 pages, 7 figure
Investigations of the electrical resistivity and thermoelectrical power of liquid less simple metals
Synthesis, Characterization, and Properties of Homometallic Dinuclear Ruthenium Complex Containing Chloro-Phenanthroline and Bipyridine
This paper deals with the synthesis and spectroscopic investigation of homometallic dinuclear ruthenium(II) complex containing chlorophenanthroline and bipyridine ligands. This bimetallic ruthenium polypyridine complex may be useful for biological electron transfer studies. Heteroleptic ruthenium monomer complex Ru(bpy)2(Cl-phen) (where bpy = 2,2’-bipyridine and Cl-phen = 5-chloro- 1,10-phenanthroline) was prepared in a two step procedure previously developed in our laboratory. This monomer complex was used to prepare the ruthenium dimer complex, (bpy)2Ru(phen-phen)Ru(bpy)2, by utilizing the Ni-catalyzed coupling reaction. Both the complexes were purified by column chromatography. The identity and the integrity of the complexes were confirmed by elemental analysis as well as mass spectroscopy. The calculated and the experimental values for the elemental analysis were in good agreement. The calculated and experimental molar masses of the dimer complex were also identical. UV/Vis absorption, emission spectroscopic method, and cyclic voltammetric method were used to investigate the properties of the dimer complex
Producing more rice with less water from irrigated systems
Irrigation management / Water use efficiency / Crop production / Water requirements / Water balance / Rice / Water distribution / Irrigated farming / Productivity / On-farm research / Irrigation scheduling / Groundwater / Conjunctive use / Rehabilitation / Modernization / Farmer participation / Farming systems / Irrigation systems / Crop-based irrigation / Asia / Philippines / Sri Lanka / Bangladesh / China / Malaysia / USA
Learning what matters - Sampling interesting patterns
In the field of exploratory data mining, local structure in data can be
described by patterns and discovered by mining algorithms. Although many
solutions have been proposed to address the redundancy problems in pattern
mining, most of them either provide succinct pattern sets or take the interests
of the user into account-but not both. Consequently, the analyst has to invest
substantial effort in identifying those patterns that are relevant to her
specific interests and goals. To address this problem, we propose a novel
approach that combines pattern sampling with interactive data mining. In
particular, we introduce the LetSIP algorithm, which builds upon recent
advances in 1) weighted sampling in SAT and 2) learning to rank in interactive
pattern mining. Specifically, it exploits user feedback to directly learn the
parameters of the sampling distribution that represents the user's interests.
We compare the performance of the proposed algorithm to the state-of-the-art in
interactive pattern mining by emulating the interests of a user. The resulting
system allows efficient and interleaved learning and sampling, thus
user-specific anytime data exploration. Finally, LetSIP demonstrates favourable
trade-offs concerning both quality-diversity and exploitation-exploration when
compared to existing methods.Comment: PAKDD 2017, extended versio
- …