
Available at: http://www.ictp.trieste.it/~pub
�

off IC/2001/74

United Nations Educational Scienti�c and Cultural Organization
and

International Atomic Energy Agency

THE ABDUS SALAM INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

INVESTIGATIONS OF THE ELECTRICAL RESISTIVITY

AND THERMOELECTRICAL POWER OF LIQUID

LESS SIMPLE METALS

S. Sharmin
Department of Physics, University of Dhaka, Dhaka-1000, Bangladesh

and

G.M. Bhuiyan1

Department of Physics, University of Dhaka, Dhaka-1000, Bangladesh

and

The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy.

MIRAMARE { TRIESTE

July 2001

1Corresponding author. Regular Associate of the Abdus Salam ICTP.
E-mail: gbhuiyan@du.bangla.net/gbhuiyan@ictp.trieste.it

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25350164?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Abstract

Electronic transport properties namely the electrical resistivity and thermoelectric power of

liquid less simple metals, Zn, Cd, Hg, In, Tl, Sn, Pb, Sb, and Bi are calculated by using the

widely used Ziman theory. The e�ective electron-ion and ion-ion interactions are described by

the Bretonnet-Silbert model. The liquid state theory, to evaluate the static structure factors,

is described by the thermodynamically self-consistent variational modi�ed hypernetted chain

(VMHNC) integral equation of liquids. The results of calculations for the electrical resistivity

are found to be fairly good when compared to the experimental data, but the agreement improves

signi�cantly when the blurring of the Fermi surface due to �nite mean free path of electron is

accounted for. The values of the calculated thermoelectric power, for most of the systems, are

found to be of the same sign and of the same order of magnitude as predicted by the experiment.

The results of the thermopower also exhibit that the contribution of the k dependent term of

the electron-ion potential is signi�cant for the systems concerned.
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1 Introduction

In a previous work [1] we investigated the structural, thermodynamic, and atomic transport

properties of liquid less simple metals namely, for Zn, Cd, Hg, In, Tl, Sn, Pb, and Bi near their

melting temperatures. In that work the Bretonnet-Silbert (BS) model [2] for interionic inter-

actions were used in conjunction with the variational modi�ed hypernetted chain (VMHNC)

integral equation theory of liquids. Results of those calculations were found to be in good agree-

ment with the corresponding experimental data. In particular, the results of atomic transport

properties were found to be excellent.

In the present work we intend to investigate the electronic transport properties, namely,

the electrical resistivity and the thermoelectric power for the aforementioned liquid less simple

metallic systems. It is well known that the electronic transport property, like the thermodynamic

ones, is not an average property and the details of the electron-ion pair potential remains in

the heart of the theory [3]. So the investigation of electronic transport properties badly needs a

potential which exhibits correct behaviour for the concerned metallic systems.

Though the d-bands in the less simple metals are completely �lled by electrons, still the

e�ect of the sd-hybridization exists and it is signi�cant [4,5]. Therefore these systems demand

a model which can correctly incorporate this e�ect self-consistently. In this case the BS model

is one of the promising candidates. It is quite relevant to say that the BS model has not been

applied to study the electronic transport properties before. Here we describe the BS model very

briey just for completeness.

Bretonnet-Silbert have proposed a local model [6] to describe electron-ion and interionic

interactions, primarily, for liquid transition metals. This model treats sp and d-bands separately

within the well established pseudopotential formalism. The sp-band is described via the empty

core; the d-band contribution is derived from the d-band scattering phase shift by using the

inverse scattering approach. The resulting model pseudopotential thus reduces to a simple local

form which permits one to extend it to other liquidmetals for which the e�ects of sd-hybridization

are signi�cant. It may be noted, here, that the norm conserving non local pseudopotentials are,

in principle, to be preferred for accurate predictions. But there are evidences that the local

pseudopotentials describe physical properties in some cases, even better [4] than the former

ones.

One of the essential ingredients for the evaluation of the electrical resistivity [3] (see eq.

(1) below) is the static structure factor, S(q), that involves the interionic interaction through

the statistical mechanics. In any way, the theoretical values of the electrical resistivity is very

sensitive to the accuracy of the structure factor [7,8]. Therefore, the relevant transport theory

thus requires, essentially, a correct pro�le of S(q) for the realistic description. The variational

modi�ed hypernetted chain (VMHNC) is one of the most modern integral equation theories of

liquids ever known. It is thermodynamically self consistent for both virial and compressibility
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routes [9]. Its accuracy for the liquid transition, noble and the less simple metallic calculations

has been tested elsewhere [10,11], and found that the order of accuracy is as good as the computer

simulations. In this paper we have used the VMHNC theory to calculate the S(q).

One of the widely used theories for the electrical resistivity is the Ziman theory (ZT) [12]. The

starting point of this theory rests on the �rst order time dependent perturbation theory [13]. This

theory successfully takes into account all multiphonon processes, Debye-Waller factors, Umklapp

processes, couplings to transverse phonons and anharmonic phonon e�ects without ever going

through an intermediate description of the lattice oscillations in terms of phonons. It proves to

be successful for simple metals and their liquids [14]. The Ziman theory was further extended to

the noble and transition metals [15,16]. The extended theory involves the t-matrix that depends

on the relevant phase shift. The phase shift is derived by solving the Schr�odinger equation

involving the muÆn-tin potentials. Consequently it is much more expensive, computationally,

than the Ziman's original theory [12]. In a recent work [8] it is reported that when the t-matrix

is expanded for multiple scattering the 2nd and the 3rd term increases the resistivity by 7% and

1%, respectively. It is worth noting that the �rst term of the expansion alone corresponds to

the original Ziman formula for resistivity. In addition, the results of calculations obtained from

the extended theory shows a limited success [8] when compared with the experimental data. On

the other hand, the original theory has a very simple form, and is easy to handle numerically.

Since we intend to investigate electronic transport of the liquid less simple metals we assume

that the original Ziman theory [12] is adequate for the present calculations.

The theory of the thermoelectric power [17] used in this work (see eq. (2) below) depends

explicitly on the value of the screened potential at 2 kf (kF is the Fermi radius), and the slope

of the potential in k-space, and also on the value of the resistivity. Therefore, in our view, the

�ne features of the electron-ion pseudopotential could be examined correctly by calculating the

thermoelectric power of the concerning systems. Because the values of the electrical resistivity

sometimes become closer to the experimental data and thus indicates that the potential is of

high quality and has right behaviour. But when the thermopower is calculated with the same

potential it is seen that the results are of opposite sign than as predicted by the experiment [18].

The Ziman theory of any form is based on the long mean free path (MFP) approximation

[19]. But in practice, the MFP of the conduction electrons in liquid metals have �nite range.

This �niteness of the MFP, following the Heisenberg uncertainty principle, results a blurring of

Fermi surface instead of a sharp one which is assumed to be in the Ziman theory [19]. Thus the

�nite MFP, l, and the width of the blurring, 4 q say, are related in the following way l4 q � 1

[20]. Hence it is of great interest to examine the e�ect of 4 q on the resistivity if l is roughly

known or assumed to have a value that is permitted by other theoretical or experimental work.

It is, here, worth mentioning that a truely self-consistent theory incorporating the blurring e�ect

of the Fermi surface is yet to be developed.

The above aspects and prospects of electronic transport properties aroused our motivation
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to do this work. However, this work is important for the following reasons. First, here the BS

model has been extended for the �rst time - which, to the best of our knowledge, nobody did

before - to investigate the electronic transport properties of liquid less simple metals. Second,

this work along with other previous ones would allow us to draw a decisive conclusion about the

quality and transferability of the BS model to describe the static, thermodynamic and transport

properties of liquid metals, in particular, for the liquid less simple metals. Third, this work

would also permit us to have a feeling about the e�ect of Fermi surface blurring on the electrical

resistivity without exploring any complicated theory.

This paper is organized in the following way. Section 2 describes briey all theories, relevant

to the calculation of electrical resistivity and the thermoelectric power. Results and discussions

are presented in section 3. The paper is concluded in section 4 with some remarks.

2 Theories

2.1 Electronic transport theory

Starting from Byam's theory [13] for elastic scattering of neutrons one can arrive to the equation

of the electrical resistivity of the form (the well-known Ziman formula)

� =

2
0m

2

12�3 �h3 Z2 e2

Z
2 kF

0

S(q) j w(q) j2 q3 dq (1)

where S, w, Z, e, m and 
0 denote the static structure factor, screened electron-ion pair

interaction in q space, e�ective s-electron occupancy number, electron charge, mass and atomic

volume, respectively. kF is the radius of the Fermi sphere.

The thermoelectric power at a particular temperature may be written as

Q = �
�2 k2 T

3 j e j EF

� (2)

where the dimensionless parameter is

� = �
kF

2

1

�

@ �

@ k
jk=kF (3)

If one de�nes

�(q) = j w(q) j2 S(q) (4)

then one can write [14]

� = �1 + �2 + �3 (5)

where �1 = 3, �2 = �2 q and �3 = � r
2
, with

q =
4 k4F C �(2 kF )

�
(6)

(7)
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2
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2
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(8)
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�
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2.2 The e�ective electron-ion and ion-ion pair potentials

The electron-ion interaction in a metal experiencing the e�ect of s-d mixing may be written as

[6]

w0 =

8>><
>>:
P

2

j=1 Bj exp
�
� r

j a

�
for r < Rc

� Z e2

r
for r > Rc

(11)

where a, Rc and Z stand for softness parameter, core radius and the e�ective s-electron occu-

pancy number, respectively. B1 and B2 are expressed in terms of a, Rc and Z [2]

B1 =
Z e2

Rc

�
1 �

2 a

Rc

�
exp

�
Rc

a

�
(12)
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2Z e2
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a
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�
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The unscreened form factor reads

w0(q) = 4� na3
�
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�
�
4� nZ e2

q2
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where n is the atomic number density and

Jj = 2� exp

�
�
Rc

j a
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�
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j a q
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�
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�
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�
(15)

The pseudopotential theory �nally gives the interionic interaction of the form(in atomic

units)

v(r) =
Z2

r

�
1�

2

�

Z
FN (q) sin(qr) dq

�
(16)

where FN (q) is the normalized energy wavenumber characteristic

FN (q) =

 
q2

4� nZ e2

!2

w2

0(q)

�
1�

1

"(q)

�
[1�G(q)]�1 (17)

Here "(q) is the dielectric screening function and G(q) is the local �eld correction developed by

Ichimaru and Utsumi [21].

2.3 The VMHNC Theory

The variational modi�ed hypernetted chain (VMHNC) theory, originally proposed by Rosenfeld

[9], belongs to a new generation of fairly accurate integral equation theories of liquids. Like
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Table-I: Input values used in this work, and calculated coordination numbers are presented.
Here, T , n, Rc, a, Z, and NR denote temperature, atomic number density, core radius, softness
parameter, e�ective s-electron occupancy number, and coordination number, respectively

System T (K) n(�A�1) Rc(a.u) a(a.u) Z NR

Theo. Expt.

Zn 723 0.0637 1.27 0.285 1.8 11.40 10.5
Cd 623 0.0428 1.23 0.253 1.4 11.48 10.3
Hg 523 0.0386 0.92 0.170 1.3 09.88 10.0
In 433 0.0369 1.32 0.278 1.6 11.03 11.6
Tl 588 0.0332 1.13 0.218 1.5 10.49 11.6
Sn 523 0.0353 1.30 0.273 1.7 10.28 10.9
Pb 613 0.0310 1.47 0.307 1.6 11.92 10.9
Sb 933 0.0320 1.06 0.193 1.5 11.18 08.7
Bi 573 0.0289 1.49 0.317 1.7 10.56 08.8

most other integral equation theories the VMHNC solves the Ornstein-Zernike (OZ) equation

with a closure relation

g(r) = exp [h(r)� c(r)� � v(r)�B(r)] (18)

where � is the inverse of temperature times the Boltzmann constant. The bridge function B(r)

is approximated by using the analytic solution of the Percus-Yevick equation for HS namely

B(r) = BHS
PY (r; �). The packing fraction � is the variation parameter which is determined by

minimizing the VMHNC con�gurational Helmholtz free energy. Once � is �xed for a speci�c

thermodynamic state, S(q) or pair correlation function g(r) can be evaluated.

3 Results and Discussions

The pseudopotential model used in this work has three parameters; a, Rc and Z. These are

chosen in the following way. Since this work is an extension of our previous work on atomic

transport [1], we take the values of a and Rc from that paper where the procedure of choosing

is discussed.

Values of the electronic transport properties are very sensitive to the pro�le of the potential

involved [18] and to the static structure factor [7,18] because the value of 2 kF generally lies

at the principal peak (or near it) of S(q) which in turn depends on potential. In addition, the

square of the screened form factor of the electron-ion pseudopotential is also involved directly.

Therefore, to �t the theoretical S(q), speci�cally the position and height of the �rst peak, to the

experimental one as close as possible we have adjusted the value of Z for each individual system.

Here, we follow the concept that the e�ect of hybridization between s and d electrons can be

approximately accounted for by changing the relative occupancy of the s and d -bands [22]. This

is supported by the self consistent calculations by Moriarty [23] and is also in conformity with

the e�ective charge transfer noted in the augmented spherical waves (ASW) calculations [24].
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Here we may also mention that, in principle, there is no restriction as such to use di�erent but

suitable values of Z for di�erent systems provided self-consistent calculations of charge transfer

support these values. The values of Rc, a and Z are listed in Table-I. It is relevant to note here

that in the previous paper [1] we used a constant value of Z(=1.3) for all systems.

The e�ect of alteration of Z on the e�ective ion-ion pair potential and as a consequence on

the S(q) are shown in �gures 1 and 2, respectively.

Having chosen the model parameters the liquid structures for Zn, Cd, Hg, In, Tl, Sn, Pb, Sb,

and Bi are calculated by using the VMHNC theory of liquids. Values of the input temperatures

and densities are taken from [25]. We have used the Gillan algorithm [26] for a numerical solution

of the OZ equation in conjunction with the closure relation (18). In all cases we have found

that a 1024 points grid with step size 4 r = 0:06�A is suÆcient for the present calculations. We

note here that as far as the static structure factors, S(q), are concerned, the di�erence between

the present and the previous work [1] is not found to be signi�cant although the values of Z are

di�erent in the two works. So we have not presented the calculated S(q) in this paper.

The average number of atoms near a speci�c ion is related to the pair correlation function

g(r), the Fourier transform of S(q), by the equation

NR =

Z
4� r2 n g(r) dr: (19)

To verify the accuracy of calculated S(q) we have evaluated the coordination number NR which

is listed in Table-I. It is seen that the coordination number of the concerned metallic systems

varies from 9.88 to 11.92. The experimental values lie in the range 8.8 to 11.6 [25]. Other

experiments [27] also suggest that the coordination number of liquid metals varies between 10

and 12, this is exactly what our theoretical values predict. The agreement with the experimental

data, we would say, has been found to be excellent. This result thus quali�es that the accuracy

of the calculated structure factors is undoubtedly good. In (19) the upper limit of integration

has been chosen at the �rst minimum of g(r).

We now turn to the results of the calculations of the electrical resistivity of liquid Zn, Cd,

Hg, In, Tl, Sn, Pb, Sb, and Bi near their melting temperatures. Here the original Ziman theory

has been employed. The results of the calculations are illustrated in Table-II. The smallest value

of resistivity has been found to be 11.23 in Zn and the largest value 43.2 in Bi. The largest

discrepancy between the theory and experiment [28] has been found for Bi (4� = 87) and the

smallest for In (4� = 8:1). But if we compare our results with other calculated values we �nd

that our results are as good as some of others (see Table-II).

It is well known that the Ziman formula for the electrical resisitivity is, by constuction, useful

for the long mean free path situations [19], in this case the Fermi surface from which scattering

happens is assumed to be sharp. In practice, the electronic mean free path (MFP) is �nite for the

metallic systems and could be even smaller than the interatomic distance for metallic fulerenes

[29]. The range of MFP for metallic systems could be, roughly speaking, from a few Angstrom
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Table-II : Results of electrical resistivity. Electrical resistivity �. In the 2nd column values
within the parenthesis are theoretical results, taken from di�erent works. Superscripts a, b, c,
d and e correspond to [31], [32], [33], [34] and [35], respectively.

System � (�
 cm)
4q=0 4q=0.2�A�1 Expt.

Zn 11.23(16a) 20.06 37.4
Cd 16.54(17b;e) 37.13 33.7
Hg 26.34 (30d) 61.96 91.0
In 24.99(24d) 51.94 33.1
Tl 41.16(37e) 97.18 73.1
Sn 28.48 55.35 48.0
Pb 42.70(51b) 108.40 95.0
Sb 33.50 97.58 113.5
Bi 43.20 100.9 130.2

Table-III : Results of thermoelectric power. The dimensionless parameter � of thermopower.

System �1 �2 �3 �

Theo: Expt:

Zn 3 -2.942 -0.348 -0.29 -0.1
Cd 3 -3.038 -0.618 -0.66 -0.2
Hg 3 -0.240 1.286 4.05 4.5
In 3 -2.248 0.097 0.85 0.9
Tl 3 -3.286 -0.300 -0.59 0.5
Sn 3 -2.416 -0.098 0.68 0.6
Pb 3 -5.320 -1.624 -3.90 2.1
Sb 3 -5.379 -1.800 -4.18 -0.3
Bi 3 -3.073 -0.350 -0.42 0.9

to more or less a hundred Angstrom [30]. This �niteness of the MFP corresponds to a blurring of

the Fermi surface due to the Heisenberg uncertainty principle. The uncertainty, 4 q, of blurring

may be approximated by the relation l4 q � 1 [20]. In [30] the MFP for di�erent liquid metals

is reported, the minimum value of which is � 4�A. However, if the value of l is taken, without

any rigorous justi�cation, to be � 5�A, then 4 q appears to be equal to 0:2�A�1. We add this

value with the 2 kF for all the concerning systems, to obtain an e�ective diameter of the blurred

Fermi surface. With this e�ective value of (2 kF )
Eff we have again calculated the resistivity.

These results are presented in Table-II. We found an excellent improvement in the results when

comparing with the experimental data [25]. In this case the discrepancy between theory and

experiment is found to be minimum for Hg (4� = 30) and minimum for Cd (4� = 4:06).

Results of calculations for thermoelectric power for the concerning systems are presented

in Table-III. Here we have demonstrated only the dimensionless parameter � because the total

thermoelectric power is just a multiplication of it by one third of the free electron contribution of
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thermopower. From Table-III it appears that for all systems except for Tl, Pb and Bi, � exhibits

an appropriate sign as predicted by the experiments [25,28] and has magnitudes which are also

comparable. For Tl, Pb and Bi the sign is found to be the opposite to that of experimental

data. Since � depends on the electron-ion pseudopotential form factor at the level of 2 kF and its

derivatives with respect to k, we can conclude that electron-ion potentials used for Zn, Cd, Hg,

In, Sn, and Sb have correct �ne features. For Tl, Pb and Bi the potentials should be improved;

this may be achieved by more careful parameterization.

From (3) it is seen that the dimensionless parameter in the formula of the thermopower

consists of three essential terms. The �rst one is due to the free electron contribution, the

second term explicitly depends on the screened electon-ion potential at 2 kF , and the third term

is due to k or energy dependence of the potential. The breakdown details of � are also illustrated

in Table-III. The smallest value of �2 has been found to be -0.24 in Hg, and the largest one to

be -5.379 in Sb. The magnitudes of �2 are found to be larger than �1 for liquid Cd, Tl, Pb, Sb

and Bi. For the rest of the systems values of �2 are smaller than �1. Values of �2 are larger in

magnitude than those of �1 except for Hg. It is also noticed that the values of �1 and �2 are

almost of same magnitudes for Zn, Cd, Tl and Bi. Since their signs are opposite they roughly

cancel each other and the decisive contribution to � comes from �3. When the values of �3 are

compared with total � it is clearly observed that the former values are signi�cant for all systems

except for In and Sn. So the 3rd term of � cannot be neglected, in general, in the case of

liquid less simple metals. It is relevant to mention here that some authors, in their works, have

considered the 3rd term as insigni�cant and have neglected its contribution to the thermopower

[18,28]. From Table-III it is noticed that the sign of �3 is negative for all systems except for

Hg and In. This �nally implies that the slope of �(q) (= S(q) j w(q) j2) w.r.t. k is positive

for all systems except for the latter two elements. During the progress of the calculations we

observed that the position q = 2 kF lies just on the right side of the principal peak of S(q) for

all systems except for Hg, for which it is right on the peak. Therefore, the slope of S(q) as

a function of k would be similar for all systems because of the similar shapes of S(q). So we

believe that the di�erent sign of �3 for di�erent metallic systems is solely related to the slope of

the potential(w(q)) pro�les.

4 Conclusions

In this work we have investigated the electronic transport properties of liquid less simple metals

namely for Zn, Cd, Hg, In, Tl, Sn, Pb, Sb, and Bi. The essential ingredients for the calculations

are the Bretonnent-Silbert model potentials, the VMHNC theory of liquids and the Ziman orig-

inal theory for the electrical resistivity. The results of calculations for electrical resistivity have

been found to be in good agreement with corresponding theoretical as well as experimental data.

The results of calculations for the thermoelectric power are found to be in very good agreement

10



for all systems except for liquid Tl, Pb and Bi. In the intermediate step of calculations we

have also calculated the coordination numbers for each system, results of which suggest that the

accuracy of the static structure factors obtained from the VMHNC theory is adequate for the

present calculations. However, the complete analysis of the caculated results of the present and

previous ones [1] permits us to draw the following concluding remarks:

(i) The Bretonnet-Silbert model pseudopotential could be a good starting point for the study

of structural, thermodynamic, atomic and electronic transport properties of liquid less simple

metals.

(ii) Values of the calculated electrical resistivity improves dramatically when the e�ect of blurring

of the Fermi surface due to the �nite MFP is accounted for by adding the amount of uncer-

tainty of blurring to the Fermi diameter. These results are supported by the work of March and

coworkers [19,20,27].

(iii) Finite MFP of the conduction electrons leads to the relation l � 1

4 q
which in turn would

allow one to estimate, at least qualitatively, the value of MFP for metallic systems by �tting

the experimental values of the electrical resistivity or if 4 q can be measured experimentally.

(iv) The contribution of the k dependent term (i.e. r/2 of (5)) to the thermoelectric power is

signi�cant and cannot be neglected in the case of liquid less simple metals. The �ne behaviour

of any electron-ion pseudopotential, in our view, may be examined by evaluating the thermo-

electric power of liquid metals.

Finally we would like to note that use of the BS model in calculating the various properties of

liquid binary alloys is in progress. Preliminary results are found to be very encouraging. Some of

these results (viz. on structure) are on the way of publication. The rest on the thermodynamic

and transport properties will be reported in due course.
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