In the field of exploratory data mining, local structure in data can be
described by patterns and discovered by mining algorithms. Although many
solutions have been proposed to address the redundancy problems in pattern
mining, most of them either provide succinct pattern sets or take the interests
of the user into account-but not both. Consequently, the analyst has to invest
substantial effort in identifying those patterns that are relevant to her
specific interests and goals. To address this problem, we propose a novel
approach that combines pattern sampling with interactive data mining. In
particular, we introduce the LetSIP algorithm, which builds upon recent
advances in 1) weighted sampling in SAT and 2) learning to rank in interactive
pattern mining. Specifically, it exploits user feedback to directly learn the
parameters of the sampling distribution that represents the user's interests.
We compare the performance of the proposed algorithm to the state-of-the-art in
interactive pattern mining by emulating the interests of a user. The resulting
system allows efficient and interleaved learning and sampling, thus
user-specific anytime data exploration. Finally, LetSIP demonstrates favourable
trade-offs concerning both quality-diversity and exploitation-exploration when
compared to existing methods.Comment: PAKDD 2017, extended versio