2,756 research outputs found

    Parameter-free Stark Broadening of Hydrogen Lines in DA White Dwarfs

    Full text link
    We present new calculations for the Stark broadening of the hydrogen line profiles in the dense atmospheres of white dwarf stars. Our improved model is based on the unified theory of Stark broadening from Vidal, Cooper & Smith, but it also includes non-ideal gas effects from the Hummer & Mihalas occupation probability formalism directly inside the line profile calculations. This approach improves upon previous calculations that relied on the use of an ad-hoc free parameter to describe the dissolution of the line wing opacity in the presence of high electric microfields in the plasma. We present here the first grid of model spectra for hot Teff >~ 12,000 K DA white dwarfs that has no free parameters. The atmospheric parameters obtained from optical and UV spectroscopic observations using these improved models are shown to differ substantially from those published in previous studies.Comment: 8 pages, 8 figures, to appear in Journal of Physics Conference Proceedings for the 16th European White Dwarf Worksho

    Optical properties and spatial distribution of MgII absorbers from SDSS image stacking

    Full text link
    We present a statistical analysis of the photometric properties and spatial distribution of more than 2,800 MgII absorbers with 0.37<z<1 and rest equivalent width W_0(\lambda2796)>0.8\AA detected in SDSS quasar spectra. Using an improved image stacking technique, we measure the cross-correlation between MgII gas and light (in the g, r, i and z-bands) from 10 to 200 kpc and infer the light-weighted impact parameter distribution of MgII absorbers. Such a quantity is well described by a power-law with an index that strongly depends on W_0, ranging from ~-1 for W_0~ 1.5\AA. At redshift 0.37<z<0.55, we find the average luminosity enclosed within 100 kpc around MgII absorbers to be M_g=-20.65+-0.11 mag, which is ~0.5 L_g*. The global luminosity-weighted colors are typical of present-day intermediate type galaxies. However, while the light of weaker absorbers originates mostly from red passive galaxies, stronger systems display the colors of blue star-forming galaxies. Based on these observations, we argue that the origin of strong MgII absorber systems might be better explained by models of metal-enriched gas outflows from star-forming/bursting galaxies. Our analysis does not show any redshift dependence for both impact parameter and rest-frame colors up to z=1. However, we do observe a brightening of the absorbers related light at high redshift (~50% from z~0.4 to 1). We argue that MgII absorbers are a phenomenon typical of a given evolutionary phase that more massive galaxies experience earlier than less massive ones, in a downsizing fashion. (abridged)Comment: ApJ in press, 28 pages, 16 figures, using emulateapj. Only typo corrections wrt the original submission (v1

    Lyman-alpha absorption around nearby galaxies

    Full text link
    We have used STIS aboard HST to search for Lyman-alpha (Lya) absorption lines in the outer regions of eight nearby galaxies using background QSOs and AGN as probes. Lya lines are detected within a few hundred km/s of the systemic velocity of the galaxy in all cases. We conclude that a background line-of-sight which passes within 26-200 h-1 kpc of a foreground galaxy is likely to intercept low column density neutral hydrogen with log N(HI) >~ 13.0. The ubiquity of detections implies a covering factor of ~ 100% for low N(HI) gas around galaxies within 200 h-1 kpc. We discuss the difficulty in trying to associate individual absorption components with the selected galaxies and their neighbors, but show that by degrading our STIS data to lower resolutions, we are able to reproduce the anti-correlation of Lya equivalent width and impact parameter found at higher redshift. We also show that the equivalent width and column density of Lya complexes (when individual components are summed over ~ 1000 km/s) correlate well with a simple estimate of the volume density of galaxies brighter than M(B) = -17.5 at the same redshift as a Lya complex. We do not reject the hypothesis that the selected galaxies are directly responsible for the observed Lya lines, but our analysis indicates that absorption by clumpy intragroup gas is an equally likely explanation. (Abriged)Comment: Accepted for publication in Nov 20, 2002 issue of ApJ. Paper with all figures can be found at http://www.astro.princeton.edu/~dvb/lyapaper.ps (preferable). Minor typos fixe

    Analysis of IUE spectra of helium-rich white dwarf stars

    Get PDF
    We studied the class of DB white dwarf stars, using re-calibrated UV spectra for thirty four DBs obtained with the IUE satellite. By comparing the observed energy distributions with model atmospheres, we simultaneously determine spectroscopic distances (d), effective temperature (Teff), and surface gravities (log g). Using parallax measurements and previous determinations of Teff and log g from optical spectra, we can study whether the atmospheres of eleven DB stars are consistent with pure He or have a small amount of H contamination. We also report on our observations of seventeen stars with Teff close to the DB instability strip through time series photometry and found them to be non variable within our detection limits.Comment: 8 pages, 5 figure

    The True Incidence of Magnetism among Field White Dwarfs

    Get PDF
    We study the incidence of magnetism in white dwarfs from three large and well-observed samples of hot, cool, and nearby white dwarfs in order to test whether the fraction of magnetic degenerates is biased, and whether it varies with effective temperature, cooling age, or distance. The magnetic fraction is considerably higher for the cool sample of Bergeron, Ruiz, and Leggett, and the Holberg, Oswalt, and Sion sample of local white dwarfs that it is for the generally-hotter white dwarfs of the Palomar Green Survey. We show that the mean mass of magnetic white dwarfs in this survey is 0.93 solar masses or more, so there may be a strong bias against their selection in the magnitude-limited Palomar Green Survey. We argue that this bias is not as important in the samples of cool and nearby white dwarfs. However, this bias may not account for all of the difference in the magnetic fractions of these samples. It is not clear that the magnetic white dwarfs in the cool and local samples are drawn from the same population as the hotter PG stars. In particular, two or threee of the cool sample are low-mass white dwarfs in unresolved binary systems. Moreover, there is a suggestion from the local sample that the fractional incidence may increase with decreasing temperature, luminosity, and/or cooling age. Overall, the true incidence of magnetism at the level of 2 megagauss or greater is at least 10%, and could be higher. Limited studies capable of detecting lower field strengths down to 10 kilogauss suggest by implication that the total fraction may be substantially higher than 10%.Comment: 16 pages, 2 figures, Astronomical Journal in press -- Jan 2003 issu

    Mid-infrared and optical spectroscopy of ultraluminous infrared galaxies: A comparison

    Get PDF
    New tools from Infrared Space Observatory (ISO) mid-infrared spectroscopy have recently become available to determine the power sources of dust-obscured ultraluminous infrared galaxies (ULIRGs). We compare ISO classifications - starburst or active galactic nucleus (AGN) - with classifications from optical spectroscopy, and with optical/near-infrared searches for hidden broad-line regions. The agreement between mid-infrared and optical classification is excellent if optical LINER spectra are assigned to the starburst group. The starburst nature of ULIRG LINERs strongly supports the suggestion that LINER spectra in infrared-selected galaxies, rather than being an expression of the AGN phenomenon, are due to shocks that are probably related to galactic superwinds. Differences between ISO and optical classification provide clues on the evolution of ULIRGs and on the configuration of obscuring dust. We find few ISO AGN with optical HII or LINER identification, suggesting that highly obscured AGN exist but are not typical for the ULIRG phenomenon in general. Rather, our results indicate that strong AGN activity, once triggered, quickly breaks the obscuring screen at least in certain directions, thus becoming detectable over a wide wavelength range.Comment: aastex, 1 eps figure. Accepted by ApJ (Letters

    Creation and Growth of Components in a Random Hypergraph Process

    Full text link
    Denote by an ℓ\ell-component a connected bb-uniform hypergraph with kk edges and k(b−1)−ℓk(b-1) - \ell vertices. We prove that the expected number of creations of ℓ\ell-component during a random hypergraph process tends to 1 as ℓ\ell and bb tend to ∞\infty with the total number of vertices nn such that ℓ=o(nb3)\ell = o(\sqrt[3]{\frac{n}{b}}). Under the same conditions, we also show that the expected number of vertices that ever belong to an ℓ\ell-component is approximately 121/3(b−1)1/3ℓ1/3n2/312^{1/3} (b-1)^{1/3} \ell^{1/3} n^{2/3}. As an immediate consequence, it follows that with high probability the largest ℓ\ell-component during the process is of size O((b−1)1/3ℓ1/3n2/3)O((b-1)^{1/3} \ell^{1/3} n^{2/3}). Our results give insight about the size of giant components inside the phase transition of random hypergraphs.Comment: R\'{e}sum\'{e} \'{e}tend

    An Empirical Measure of the Rate of White Dwarf Cooling in 47 Tucanae

    Full text link
    We present an empirical determination of the white dwarf cooling sequence in the globular cluster 47 Tucanae. Using spectral models, we determine temperatures for 887 objects from Wide Field Camera 3 data, as well as 292 objects from data taken with the Advanced Camera for Surveys. We make the assumption that the rate of white dwarf formation in the cluster is constant. Stellar evolution models are then used to determine the rate at which objects are leaving the main sequence, which must be the same as the rate at which objects are arriving on the white dwarf sequence in our field. The result is an empirically derived relation between temperature (TeffT_{eff}) and time (tt) on the white dwarf cooling sequence. Comparing this result to theoretical cooling models, we find general agreement with the expected slopes between 20,000K and 30,000K and between 6,000K and 20,000K, but the transition to the Mestel cooling rate of Teff∝t−0.4T_{eff} \propto t^{-0.4} is found to occur at hotter temperatures, and more abruptly than is predicted by any of these models.Comment: 10 pages, 16 figures, accepted for publication in Ap
    • 

    corecore